Metals and Materials International

, Volume 24, Issue 3, pp 597–603 | Cite as

Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

  • Seung-Jin Oh
  • Joong-Hwan Jun
  • Min-Ha Lee
  • In-Jin Shon
  • Seok-Jae LeeEmail author


In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.


Tool steel Spark plasma sintering Carbide formation Microstructure Hardness 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03935163) and also financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperation R&D Program.


  1. 1.
    R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 8, 103 (2008)CrossRefGoogle Scholar
  2. 2.
    D.K. Matlock, J.G. Speer, Processing opportunities for new advanced high-strength sheet steels. Mater. Manuf. Processes 25, 7 (2010)CrossRefGoogle Scholar
  3. 3.
    O. Bouaziz, H. Zurob, M. Huang, Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 84, 937 (2013)Google Scholar
  4. 4.
    N. Fonstein, Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties (Springer, Berlin, 2015), pp. 1–16CrossRefGoogle Scholar
  5. 5.
    J.S. Choi, J.W. Lee, J.-H. Kim, F. Barlat, M.G. Lee, D. Kim, Measurement and modeling of simple shear deformation under load reversal: application to advanced high strength steels. Int. J. Mech. Sci. 98, 144 (2015)CrossRefGoogle Scholar
  6. 6.
    G.J. Park, M.W. Kang, J.G. Jung, Y.K. Lee, B.H. Kim, The effects of homogenization, hot-forging, and annealing condition on microstructure and hardness of a modified STD61 hot-work tool steel. J. Korean Soc. Heat Treat. 26, 79 (2013)Google Scholar
  7. 7.
    S. Kang, M.W. Kim, S.J. Lee, Microstructural and mechanical characteristics of novel 6% Cr cold-work tool steel. Metals 7, 12 (2017)CrossRefGoogle Scholar
  8. 8.
    H.T. Kim, J.S. Kim, Y.S. Kwon, M. Tokita, Spark plasma sintering process and its applications. Metals 7, 179 (2000)Google Scholar
  9. 9.
    P. Drescher, K. Witte, B. Yang, R. Steuer, O. Kessler, E. Burkel, C. Schick, H. Seitz, Composites of amorphous and nano crystalline Zr–Cu–Al–Nb bulk materials synthesized by spark plasma sintering. J. Alloys Compd. 667, 109 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Zhao, Y. Sun, M. Wang, Y. Chi, H. Wang, Interfacial behavior of Fe79Si9B10P5/Zn0.5Ni0.5Fe2O4 amorphous soft magnetic composite during spark plasma sintering process. Prog. Nat. Sci. Mater. Int. 26, 85 (2016)CrossRefGoogle Scholar
  11. 11.
    S.J. Oh, B.S. Kim, J.K. Yoon, K.T. Hong, I.J. Shon, Enhanced mechanical properties and consolidation of the ultra-fine WC–Al2O3 composites using pulsed current activated heating. Ceram. Int. 42, 9304 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Keller, K. Tabalaiev, G. Marnier, J. Noudem, X. Sauvage, E. Hug, Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder. Mater. Sci. Eng. A 655, 125 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Pellizzari, A. Fedrizzi, M. Zadra, Spark plasma co-sintering of hot work and high speed steel powders for fabrication of a novel tool steel with composite microstructure. Powder Technol. 214, 292 (2011)CrossRefGoogle Scholar
  14. 14.
    J. Hufenbach, L. Giebeler, M. Hoffmann, S. Kohlar, U. Kiihn, T. Gemming, S. Oswald, B. Eigenmann, J. Eckert, Effect of short-term tempering on microstructure and mechanical properties of high-strength FeCrMoVC. Acta Mater. 60, 4468 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Kumar, K. Jayasankar, M. Debata, A. Mandal, Mechanical alloying and properties of immiscible Cu–20 wt% Mo alloy. J. Alloys Compd. 647, 1040 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, N.P. Padture, Inhomogeneous oxidation of ZrB2-SiC ultra-high-temperature ceramic particulate composites and its mitigation. Acta Mater. 129, 138 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Zhang, X. Chen, D. Li, C. Chen, X. Qu, X. He, Z. Li, A comparative investigation on MIM418 superalloy fabricated using gas-and water-atomized powders. Powder Technol. 286, 798 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Suri, R.P. Koseski, R.M. German, Microstructural evolution of injection molded gas-and water-atomized 316L stainless steel powder during sintering. Mater. Sci. Eng. A 402, 341 (2005)CrossRefGoogle Scholar
  19. 19.
    Y. Tomita, Mechanical properties of modified heat treated silicon modified 4330 steel. Mater. Sci. Technol. 11, 259 (1995)CrossRefGoogle Scholar
  20. 20.
    J. Guo, S. Liu, Y. Zhou, J. Wang, X. Xing, X. Ren, Q. Yang, Stability of eutectic carbide in Fe–Cr–Mo–W–V–C alloy. Mater. Lett. 171, 216 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, 3rd edn. (Butterworth-Heinemann, London, 2006), pp. 251–261Google Scholar
  22. 22.
    E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Lond. Sect. B 64, 747 (1951)CrossRefGoogle Scholar
  23. 23.
    N.J. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953)Google Scholar
  24. 24.
    G. Marnier, C. Keller, J. Noudem, E. Hug, Functional properties of a spark plasma sintered ultrafine-grained 316L steel. Mater. Des. 63, 633 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Lee, Y. Estrin, B.C. De Cooman, Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel. Metall. Mater. Trans. A 44, 3136 (2013)CrossRefGoogle Scholar
  26. 26.
    P.A. Ferreirós, P.R. Alonso, G.H. Rubiolo, Coarsening process and precipitation hardening in Fe2AlV-strengthened ferritic Fe76Al12V12 alloy. Mater. Sci. Eng. A 648, 394 (2017)CrossRefGoogle Scholar
  27. 27.
    T. Furuhara, K. Kobayashi, T. Maki, Control of cementite precipitation in lath martensite by rapid heating and tempering. ISIJ Int. 44, 1937 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Walbrühl, D. Linder, J. Ågren, A. Borgenstam, Modelling of solid solution strengthening in multicomponent alloys. Mater. Sci. Eng. A 700, 301 (2017)CrossRefGoogle Scholar
  29. 29.
    I. Wesemann, A. Hoffmann, T. Mrotzek, U. Martin, Investigation of solid solution hardening in molybdenum alloys. Int. J. Refract. Met. Hard Mater. 28, 709 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Seung-Jin Oh
    • 1
  • Joong-Hwan Jun
    • 2
  • Min-Ha Lee
    • 2
  • In-Jin Shon
    • 1
  • Seok-Jae Lee
    • 1
    Email author
  1. 1.Division of Advanced Materials Engineering, Research Center for Advanced Materials DevelopmentChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Advanced Process and Materials R&D GroupKorea Institute of Industrial Technology (KITECH)IncheonRepublic of Korea

Personalised recommendations