Advertisement

Metals and Materials International

, Volume 24, Issue 4, pp 681–692 | Cite as

Effect of Cooling Rates on γ → α Transformation and Metastable States in Fe–Cu Alloys with Addition of Ni

  • C. Crozet
  • M. Verdier
  • S. Lay
  • A. Antoni-ZdziobekEmail author
Article
  • 87 Downloads

Abstract

α/γ phase transformations occurring in Fe–10Cu–xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.

Keywords

Fe–Ni–Cu alloys α/γ phase transformations Metastable phases Phase diagram Hardness 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    K.S. Narasimhan, Sintering of powder mixtures and the growth of ferrous powder. Mater. Chem. Phys. 67, 56–65 (2001)CrossRefGoogle Scholar
  2. 2.
    J. Konstanty, D. Tyrala, A. Radziszewska, Iron-base materials manufactured from premixed powders by the hot press process. Arch. Metall. Mater. 54(4), 1051–1058 (2009)Google Scholar
  3. 3.
    E. Hornbogen, R.C. Glenn, A metallographic study of precipitation of copper from alpha iron. Trans. Am. Inst. Min. Metall. Eng. 218, 1064–1070 (1960)Google Scholar
  4. 4.
    G.M. Worrall, J.T. Buswell, C.A. English, M.G. Hetherington, G.D.W. Smith, A study of precipitation of copper particles in a ferrite matrix. J. Nucl. Mater. 148(1), 107–114 (1987)CrossRefGoogle Scholar
  5. 5.
    P.J. Othen, M.L. Jenkins, G.D.W. Smith, W.J. Phythian, Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe–Cu and Fe–Cu–Ni. Philos. Mag. Lett. 64(6), 383–391 (1991)CrossRefGoogle Scholar
  6. 6.
    A. Borgenstam, M. Hillert, Massive transformation in the Fe–Ni system. Acta Mater. 48(11), 2765–2775 (2000)CrossRefGoogle Scholar
  7. 7.
    J.C. Zhao, Z.P. Jin, Thermodynamics of the massive, bainitic and martensitic transformations in Fe–C, Fe–Cr and Fe–Cu alloys. Acta Metall. Mater. 38(3), 425–431 (1990)CrossRefGoogle Scholar
  8. 8.
    N.M. Hwang, D.Y. Yoon, Massive transformation in an Fe–Cu alloy. J. Mater. Sci. 32(18), 4847–4855 (1997)CrossRefGoogle Scholar
  9. 9.
    Y. Kimura, S. Takaki, Phase transformation mechanism of Fe–Cu alloys. ISIJ Int. 37(3), 290–295 (1997)CrossRefGoogle Scholar
  10. 10.
    M.J. Roberts, Effect of transformation substructure on the strength and toughness of Fe–Mn alloys. Metall. Trans. 1(12), 3287–3294 (1970)Google Scholar
  11. 11.
    J. Zhao, M.R. Notis, Continuous cooling transformation kinetics versus isothermal transformation kinetics of steels: a phenomenological rationalization of experimental observations. Mater. Sci. Eng. R Rep. 15(4–5), 135–207 (1995)CrossRefGoogle Scholar
  12. 12.
    E.A. Wilson, Copper maraging steels. J. Iron Steel Inst. 206, 164–168 (1968)Google Scholar
  13. 13.
    E.A. Wilson, D.V. Shtansky, Y. Ohmori, A kinetic and electronmicroscopic study of transformations in continuously cooled Fe–15%Ni alloys. ISIJ Int. 41(8), 866–875 (2001)CrossRefGoogle Scholar
  14. 14.
    R.A. Ricks, P.R. Howell, R.W.K. Honeycombe, Formation of supersaturated ferrite during decomposition of austenite in iron–copper and iron–copper–nickel alloys. Met. Sci. 14(12), 562–568 (1980)CrossRefGoogle Scholar
  15. 15.
    N. Lebrun, P. Perrot, M. Turchanin, A. Serbruyns, Copper–iron–nickel, in Landolt-Börnstein Database IV 11D3, ed. by G. Effenberg, S. Ilyenko (Springer, Berlin, 2008), pp. 15–17Google Scholar
  16. 16.
    B. Sundman, B. Jansson, J.O. Andersson, The thermocalc databank system. Calphad 9(2), 153–190 (1985)CrossRefGoogle Scholar
  17. 17.
    TCFE3 TCS Steels/Fe-alloys database version 3. Thermo-Calc Software AB, Stockholm, Sweden (2002)Google Scholar
  18. 18.
    C. Servant, B. Sundman, O. Lyon, Thermodynamic assessment of the Cu–Fe–Ni system. Calphad 25(1), 79–95 (2001)CrossRefGoogle Scholar
  19. 19.
    R.A. Ricks, P.R. Howell, R.W.K. Honeycombe, The effect of Ni on the decomposition of austenite in Fe–Cu alloys. Metall. Mater. Trans. A 10A, 1049–1058 (1979)CrossRefGoogle Scholar
  20. 20.
    G.R. Speich, P.R. Swann, Yield strength and transformation substructure of quenched iron-nickel alloys. J. Iron Steel Inst. 203, 480–485 (1965)Google Scholar
  21. 21.
    C. Servant, M. Guymont, O. Lyon, A new phase in the ternary system Cu–Fe–Ni. Scr. Mater. 45, 103–108 (2001)CrossRefGoogle Scholar
  22. 22.
    G. Cacciamani, A. Dinsdale, M. Palumbo, A. Pasturel, The Fe–Ni system: thermodynamic modelling assisted by atomistic calculations. Intermetallics 18, 1148–1162 (2010)CrossRefGoogle Scholar
  23. 23.
    G. Salje, M. Feller-Kniepmeier, The diffusion and solubility of copper in iron. J. Appl. Phys. 48(5), 1833–1839 (1977)CrossRefGoogle Scholar
  24. 24.
    I. Ansara, Å. Jansson, System Cu–Fe, in COST507 Thermochemical Database for Light Metal Alloys, vol. 2. EUR18499, ed. by I. Ansara, A.T. Dinsdale, M.H. Rand (1998), pp. 165–167Google Scholar
  25. 25.
    E.A. Wilson, S.F. Medina, Application of Koistinen and Marburger’s equation for volume fraction of martensite to diffusional transformations obtained on continuous cooling 0.13% C high strength low alloy steel. Mater. Sci. Trans. 16(6), 630–633 (2000)Google Scholar
  26. 26.
    C. Crozet, A. Antoni-Zdziobek, S. Lay, S. Coindeau, Influence of copper additions in Fe–10Ni (mass%) alloys on cooling microstructures. Solid State Phenom. 172–174, 505–510 (2001)Google Scholar
  27. 27.
    K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa, Precipitation hardening in Fe–Cu binary and quaternary alloys. ISIJ Int. 34(4), 359–365 (1994)CrossRefGoogle Scholar
  28. 28.
    M. Charleux, F. Livet, F. Bley, F. Louchet, Y. Bréchet, Thermal ageing of an Fe–Cu alloy: microstructural evolution and precipitation hardening. Philos. Mag. A 73(4), 883–897 (1996)CrossRefGoogle Scholar
  29. 29.
    C. Crozet, Phase equilibria and microstructures of rich-Fe Cu–Fe–Ni alloys. Ph.D. dissertation, Grenoble INP, 2011Google Scholar
  30. 30.
    G.W. Qin, G. Zhao, M. Jiang, H.X. Li, S.M. Hao, The isothermal sections of the Cu–Ni–Fe ternary system at 600, 800, 1000 and 1050°C. Z. Metallkd. 91(5), 379–382 (2000)Google Scholar
  31. 31.
    I. Gallino, S. Curiotto, M. Baricco, M.E. Kasner, R. Busch, Homogenization of highly alloyed Cu–Fe–Ni: a phase diagram study. J. Phase Equilib. Diffus. 29(2), 131–135 (2008)CrossRefGoogle Scholar
  32. 32.
    K.J. Rönkä, A.A. Kodentsov, P.J.J. Van Loon, J.K. Kivilahti, F.J.J. Van Loo, Thermodynamic and kinetic study of diffusion paths in the system Cu–Fe–Ni. Metall. Mater. Trans. A 27A, 2229–2238 (1996)CrossRefGoogle Scholar
  33. 33.
    L.A. Dreval, M.A. Turchanin, P.G. Agraval, Thermodynamic assessment of the Cu–Fe–Ni system. J. Alloys Compd. 587, 533–543 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.SIMAP, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), CNRSUniv. Grenoble AlpesGrenobleFrance

Personalised recommendations