Advertisement

Metals and Materials International

, Volume 24, Issue 3, pp 633–643 | Cite as

Enhanced Mechanical Properties of 316L Stainless Steel Prepared by Aluminothermic Reaction Subjected to Multiple Warm Rolling

  • Z. N. Li
  • F. A. Wei
  • P. Q. LaEmail author
  • F. L. Ma
Article

Abstract

Large dimensional bulk 316L stainless steels were prepared by aluminothermic reaction method and rolled at 973 K (700 °C) with different deformation, the microstructures evolution and mechanical properties were characterized in detail. The results showed that the microstructure of casting steel consists of nanocrystalline/submicrocrystalline/microcrystalline austenite and submicrocrystalline ferrite. After rolling to thickness reduction of 30, 50 and 70%, the submicrocrystalline austenite grains were crushed and dispersed more uniformly in the matrix of the steel, the grain size of submicrocrystalline austenite decreased from 246 to 136 nm. The mechanical properties of the rolled steels were significantly enhanced, with the thickness reduction increased from 30 to 70%, the tensile strength increased from 632 to 824 MPa, the yield strength increased from 425 to 615 MPa, and the elongation increased from 11 to 24%. After rolling to thickness reduction of 70%, the optimized combination of high strength and high ductility was obtained.

Keywords

Rolling Microstructure Tensile strength Dynamic recrystallization 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51561020).

References

  1. 1.
    Z. Yanushkevich, A. Lugovskaya, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng. A 667, 279 (2016)CrossRefGoogle Scholar
  2. 2.
    G. Buzzichelli, E. Anelli, ISIJ Int. 42, 1354 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Tikhonova, R. Kaibyshev, X. Fang, W. Wang, A. Belyakov, Mater. Charact. 70, 14 (2012)CrossRefGoogle Scholar
  4. 4.
    P.Q. La, F.A. Wei, X.F. Lu, C.G. Chu, Y.P. Wei, H.D. Wang, Metall. Mater. Trans. A 45(11), 5236 (2014)CrossRefGoogle Scholar
  5. 5.
    J.S. Lian, R.Z. Valiev, B. Baudelet, Acta Metall. Mater. 43(11), 4165 (1995)CrossRefGoogle Scholar
  6. 6.
    H.D. Wang, P.Q. La, T. Shi, Y.P. Wei, X.F. Lu, Mater Eng. (4), 92 (2012)Google Scholar
  7. 7.
    F.A. Wei, P.Q. La, F.L. Ma, J. Mater. Res. 31(12), 1691 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Cheng et al., J. Mater. Process. Technol. 235, 134 (2016)CrossRefGoogle Scholar
  9. 9.
    Z. Yanushkevich, A. Mogucheva, M. Tikhonova, A. Belyakov, R. Kaibyshev, Mater. Charact. 62, 432 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Zrnik, S.V. Dobatkin, L. Kraus, G. Raab, Steel Res. Int. 84(12), 1340 (2013)CrossRefGoogle Scholar
  11. 11.
    R. Mohammadzadeh, A. Akbari, Mater. Charact. 93(7), 119 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Yinmin, C. Mingwei, Z. Fenghua, M. En, Nature 419(6910), 912 (2002)CrossRefGoogle Scholar
  13. 13.
    V.L. Tellkamp, E.J. Lavernia, A. Melmed, Metall. Mater. Trans. A 32(9), 2335 (2001)CrossRefGoogle Scholar
  14. 14.
    T. Inoue, F. Yin, Y. Kimura, Metall. Mater. Trans. A 41(2), 341 (2010)CrossRefGoogle Scholar
  15. 15.
    Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Acta Mater. 82, 244 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.H. Zhao, T. Topping, J.F. Bingert, Adv. Mater. 20, 3028 (2008)CrossRefGoogle Scholar
  17. 17.
    F. Khodabakhshi, M. Kazeminezhad, Mater. Sci. Eng. A 528, 5212 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Bao, G. Zhao, C. Yu, Q. Chang, C. Ye, X. Mao, Appl. Math. Model. 35, 3268 (2011)CrossRefGoogle Scholar
  19. 19.
    D. Barraclough, C. Sellars, Metal Sci. 13, 257 (1979)CrossRefGoogle Scholar
  20. 20.
    A. Belyakov, H. Miura, T. Sakai, Scr. Mater. 43, 21 (2000)CrossRefGoogle Scholar
  21. 21.
    F. Chen, Z. Cui, D. Sui, B. Fu, Mater. Sci. Eng. A 540, 46 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Metall. Mater. Trans. A 39, 1371 (2008)CrossRefGoogle Scholar
  23. 23.
    P.Q. La, D. Zhang, D.L. Ma, Y.P. Wei, H.D. Wang, X.F. Lu, Int. J. Self-Propag. High-Temp. Synth. 21(2), 89 (2012)CrossRefGoogle Scholar
  24. 24.
    P.Q. La, F.A. Wei, X.F. Lu, T. Shi, C.G. Chu, H.D. Wang, Y.P. Wei, Philos. Mag. Lett. 94(8), 478 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.N. Li, F.A. Wei, P.Q. La, Adv. Mater. Sci. Eng. (1), 1 (2017)Google Scholar
  26. 26.
    K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Badji, N. Kherrouba, B. Mehdi, B. Cheniti, M. Bouabdallah, C. Kahloun, B. Bacroix, Mater. Chem. Phys. 148(3), 664 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Tian, Y.X. Tong, F. Chen, L. Li, Y.F. Zheng, Mater. Sci. Eng. A 615, 273 (2014)CrossRefGoogle Scholar
  29. 29.
    D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, E. Lavernia, Scr. Mater. 49(4), 297 (2003)CrossRefGoogle Scholar
  30. 30.
    E. Rafizadeh, A. Mani, M. Kazeminezhad, Mater. Sci. Eng. A 515(1–2), 162 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering, Research Center of High Performance Light Metal Alloys and FormingQinghai UniversityXiningChina

Personalised recommendations