Advertisement

Metals and Materials International

, Volume 24, Issue 4, pp 761–772 | Cite as

A Comparative Study on the Effect of MWCNT as Reinforcement on the Corrosion Parameters of Different Ni–W/MWCNTs Nanocomposite Coatings in Various Corrosive Media

  • Zahra Mohammadpour
  • Hamid R. ZareEmail author
Article

Abstract

Nickel–tungsten multi-walled carbon nanotubes (Ni–W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.

Keywords

Ni–W/MWCNTs nanocomposite coating Corrosion resistance Crack-free coating Microhardness 

References

  1. 1.
    Z. Zeng, A. Liang, J. Zhang, Electrochim. Acta 53, 7344 (2008)CrossRefGoogle Scholar
  2. 2.
    M.P. Quiroga Arganaraz, S.B. Ribotta, M.E. Folquer, G. Benitez, A. Rubert, L.M. Gassa, M.E. Vela, R.C. Salvarezza, J. Solid State Electrochem. 17, 307 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Meraj, N. Yedla, S. Pal, Met. Mater. Int. 22, 373 (2016)CrossRefGoogle Scholar
  4. 4.
    O. Younes, E. Gileadi, Electrochem. Solid-State Lett. 3, 543 (2000)CrossRefGoogle Scholar
  5. 5.
    H.Y. Ha, T.H. Lee, S. Kim, Met. Mater. Int. 23, 115 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Krolikowski, E. Plonska, A. Ostrowski, M. Donten, Z. Stojek, J. Solid State Electrochem. 13, 263 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Chianpairot, G. Lothongkum, C.A. Schuh, Y. Boonyongmaneerat, Corros. Sci. 53, 1066 (2011)CrossRefGoogle Scholar
  8. 8.
    L. Elias, A. Chitharanjan, Hegde. J. Alloys Compd. 712, 618 (2017)CrossRefGoogle Scholar
  9. 9.
    H.T. Wang, H.H. Sheu, M.-D. Ger, K.H. Hou, Surf. Coat. Technol. 259, 268 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Surender, B. Basu, R. Balasubramaniam, Tribol. Int. 37, 743 (2004)CrossRefGoogle Scholar
  11. 11.
    M.H. Allahyarzadeh, M. Aliofkhazraei, A.R. Sabour Rouhaghdam, V. Torabinejad, J. Alloys Compd. 666, 217 (2016)CrossRefGoogle Scholar
  12. 12.
    E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Szczerba, M. Kot, Mater. Des. 80, 1 (2015)CrossRefGoogle Scholar
  13. 13.
    K.A. Kumar, G.P. Kalaignan, V. Muralidharan, Ceram. Int. 39, 2827 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Hu, J. Tu, Z. Mei, Z. Li, X. Zhang, Surf. Coat. Technol. 141, 174 (2001)CrossRefGoogle Scholar
  15. 15.
    I. Haq, T.I. Khan, Surf. Coat. Technol. 205, 2871 (2011)CrossRefGoogle Scholar
  16. 16.
    B. Li, W. Zhang, W. Zhang, Y. Huan, J. Alloys Compd. 702, 38 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, Q. Zhou, K. Li, Q. Zhong, Q.B. Bui, Ceram. Int. 41, 79 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Shawki, Z. Abdel Hamid, Anticorrs. Method. 44, 178 (1997)CrossRefGoogle Scholar
  19. 19.
    C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y. Yan, Nano Lett. 4, 345 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Arai, A. Fujimori, M. Murai, M. Endo, Mater. Lett. 62, 3545 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Li, Y. He, Y. Fan, W. Xu, Q. Yang, RSC Adv. 5, 68890 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Su, C. Liu, J. Guo, P. Huang, Surf. Coat. Technol. 217, 94 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Alishahi, S.M. Monirvaghefi, A. Saatchi, S.M. Hosseini, Appl. Surf. Sci. 258, 2439 (2012)CrossRefGoogle Scholar
  24. 24.
    Q. Li, M.C. Turhan, C.A. Rottmair, R.F. Singer, S. Virtanen, Mater. Corr. 63, 384 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Fan, Y. He, P. Luo, T. Shi, H. Li, J. Electrochem. Soc. 162, D270 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Zemanova, R. Kurinec, V. Jorik, M. Kadleciova, Chem. Pap. 66, 492 (2012)CrossRefGoogle Scholar
  27. 27.
    D. Rusu, A. Ispas, A. Bund, C. Gheorghies, G. Carac, J. Coat. Technol. Res. 9, 87 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Supicova, R. Rozik, L. Trnkova, R. Orinakova, M. Galova, J. Solid State Electrochem. 10, 61 (2006)CrossRefGoogle Scholar
  29. 29.
    I. Rose, C. Whittington, Nickel Plating Handbook (OM Group, Espoo, 2002)Google Scholar
  30. 30.
    R. Juskenas, I. Valsiunas, V. Pakstas, R. Giraitis, Electrochim. Acta 54, 2616 (2009)CrossRefGoogle Scholar
  31. 31.
    Z. Hu, X. Jie, G. Lu, J. Coat. Technol. Res. 7, 809 (2010)CrossRefGoogle Scholar
  32. 32.
    P.C. Rath, B.P. Singh, L. Besra, S. Bhattacharjee, J. Am. Ceram. Soc. 95, 2725 (2012)CrossRefGoogle Scholar
  33. 33.
    B.N. Popov, Corrosion Engineering: Principles and Solved Problems (Elsevier, Amsterdam, 2015)Google Scholar
  34. 34.
    A.R. Madram, H. Pourfarzad, H.R. Zare, Electrochim. Acta 85, 263 (2012)CrossRefGoogle Scholar
  35. 35.
    A. G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, West Conshohocken (1999) Google Scholar
  36. 36.
    M.C. Turhan, Q. Li, H. Jha, R.F. Singer, S. Virtanen, Electrochim. Acta 56, 7141 (2011)CrossRefGoogle Scholar
  37. 37.
    F.M. Mahgoub, A.M. Hefnawy, Open J. Phys. Chem. 2, 221 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Abdallah, I. Zaafarany, S.A. El Wanees, R. Assi, Int. J. Electrochem. Sci. 9, 1071 (2014)Google Scholar
  39. 39.
    G. Frankel, J. Electrochem. Soc. 145, 2186 (1998)CrossRefGoogle Scholar
  40. 40.
    J. Kish, M. Ives, J. Rodda, J. Electrochem. Soc. 147, 3637 (2000)CrossRefGoogle Scholar
  41. 41.
    A. Mindyuk, E. Svist, O. Savitskaya, L. Petrov, Z. Gutman, J. Soc. Mater. Sci. 3, 113 (1967)CrossRefGoogle Scholar
  42. 42.
    M. Komath, Mater. Chem. Phys. 45, 171 (1996)CrossRefGoogle Scholar
  43. 43.
    C. Zhou, X. Lu, Z. Xin, J. Liu, Y. Zhang, Corros. Sci. 80, 269 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Ranganatha, T. Venkatesha, K. Vathsala, Appl. Surf. Sci. 263, 149 (2012)CrossRefGoogle Scholar
  45. 45.
    J. Gallego, J. Barrault, C. Batiot-Dupeyrat, F. Mondragon, Micron 44, 463 (2013)CrossRefGoogle Scholar
  46. 46.
    H. Hassan, E. Abdelghani, M. Amin, Electrochim. Acta 52, 6359 (2007)CrossRefGoogle Scholar
  47. 47.
    M.S. Hong, I.J. Park, J.G. Kim, Met. Mater. Int. 23, 708 (2017)CrossRefGoogle Scholar
  48. 48.
    B. Abbasi-Khazaei, S. Keshavarz, Mater. Corr. 8, 883 (2017)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceYazd UniversityYazdIran

Personalised recommendations