Advertisement

Metals and Materials International

, Volume 24, Issue 5, pp 1181–1190 | Cite as

Development of a Hydrogen Uptake-Release Mg-Based Alloy by Adding a Polymer CMC (Carboxymethylcellulose, Sodium Salt) via Reaction-Accompanying Milling

  • Young Jun Kwak
  • Eunho Choi
  • Myoung Youp SongEmail author
Article

Abstract

The addition of carboxymethylcellulose, sodium salt (CMC) might improve the hydrogen uptake and release properties of Mg since it has a relatively low melting point and the melting of CMC during milling in hydrogen (reaction-accompanying milling) may make the milled samples be in good states to absorb and release hydrogen rapidly and to have a large hydrogen-storage capacity. Samples with compositions of 95 w/o Mg + 5 w/o CMC (named Mg–5CMC) and 90 w/o Mg + 10 w/o CMC (named Mg–10CMC) were prepared by adding CMC via reaction-accompanying milling. Activation of Mg–10CMC was completed after about 3 hydrogen uptake-release cycles. Mg–10CMC had a higher initial hydrogen uptake rate and a larger amount of hydrogen absorbed in 60 min, U (60 min), than Mg–5CMC before and after activation. At the cycle number of three (CN = 3), Mg–10CMC had a very high initial hydrogen uptake rate (1.56 w/o H/min) and a large U (60 min) (5.57 w/o H) at 593 K in hydrogen of 12 bar, showing that the activated Mg–10CMC has an effective hydrogen-storage capacity of about 5.6 w/o at 593 K in hydrogen of 12 bar at CN = 3. At CN = 2, Mg–10CMC released 1.00 w/o H in 2.5 min, 4.67 w/o H in 10 min, and 4.76 w/o H in 60 min at 648 K in hydrogen of 1.0 bar. The milling in hydrogen of Mg with CMC is believed to generate imperfections and cracks and reduce the particle size. The addition of 10 w/o CMC was more effective on the initial hydrogen uptake rate and U (60 min) compared with the 10 w/o additions of NbF5, TaF5, Fe2O3, and MnO, and the 10 w/o simultaneous addition of Ni, Fe, and Ti. To the best of our knowledge, this study is the first in which a polymer CMC is added to Mg by reaction-accompanying milling to improve the hydrogen storage properties of Mg.

Keywords

Hydrogen storage material Magnesium CMC (carboxymethylcellulose, sodium salt) addition Hydrogen uptake rate Activation Milling in hydrogen 

References

  1. 1.
    H.C. Zhong, H. Wang, L.Z. Ouyang, M. Zhu, J. Alloys Compd. 509, 4268 (2011)CrossRefGoogle Scholar
  2. 2.
    L. Xie, J. Li, T. Zhang, L. Song, Int. J. Hydrogen Energy 42, 21121 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Li, F. Hu, L. Luo, J. Xu, Z. Zhao, Y. Zhang, D. Zhao, Catalysis Today, in press (Available online 1 November 2017)Google Scholar
  4. 4.
    Y.J. Kwak, H.R. Park, M.Y. Song, Int. J. Hydrogen Energy 42, 1018 (2017)CrossRefGoogle Scholar
  5. 5.
    Y.J. Kwak, H.R. Park, M.Y. Song, J. Nanosci. Nanotechnol. 17, 8105 (2017)CrossRefGoogle Scholar
  6. 6.
    M.Y. Song, S.H. Lee, Y.J. Kwak, H.R. Park, J. Nanosci. Nanotechnol. 17, 8132 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Pezat, B. Darriet, P. Hagenmuller, J. Less-Common Met. 74, 427 (1980)CrossRefGoogle Scholar
  8. 8.
    J.M. Boulet, N. Gerard, J. Less-Common Met. 89, 151 (1983)CrossRefGoogle Scholar
  9. 9.
    M. Khrussanova, M. Terzieva, P. Peshev, K. Petrov, M. Pezat, J.-P. Manaud, B. Darriet, Int. J. Hydrogen Energy 10, 591 (1985)CrossRefGoogle Scholar
  10. 10.
    M. Khrussanova, P. Peshev, J. Less-Common Met. 131, 379 (1987)CrossRefGoogle Scholar
  11. 11.
    M. Khrussanova, M. Pezat, B. Darriet, P. Hagenmuller, J. Less-Common Met. 86, 153 (1982)CrossRefGoogle Scholar
  12. 12.
    S. Bouaricha, J.P. Dodelet, D. Guay, J. Hout, S. Boily, R. Schulz, J. Alloys Compd. 297, 282 (2000)CrossRefGoogle Scholar
  13. 13.
    H. Imamura, Y. Takesue, T. Akimoto, S. Tabata, J. Alloys Compd. 293–295, 564 (1999)CrossRefGoogle Scholar
  14. 14.
    H. Chu, S. Qiu, L. Sun, J. Huot, Dalton Trans. 44, 16694 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Jain, J. Lang, N.Y. Skryabina, D. Fruchart, S.F. Santos, K. Binder, T. Klassen, J. Huot, J. Alloys Compd. 575, 364 (2013)CrossRefGoogle Scholar
  16. 16.
    A.A.C. Asselli, N.B. Hébert, J. Huot, Int. J. Hydrogen Energy 39, 12778 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Aminorroaya, A. Ranjbar, Y.H. Cho, H.K. Liu, A.K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011)CrossRefGoogle Scholar
  18. 18.
    S.H. Lee, Y.J. Kwak, H.R. Park, M.Y. Song, Int. J. Hydrogen Energy 39, 16486 (2014)CrossRefGoogle Scholar
  19. 19.
    S.H. Lee, Y.J. Kwak, H.R. Park, M.Y. Song, Korean J. Met. Mater. 52, 957 (2014)CrossRefGoogle Scholar
  20. 20.
    S.H. Lee, Y.J. Kwak, H.R. Park, M.Y. Song, Korean J. Met. Mater. 53, 187 (2015)CrossRefGoogle Scholar
  21. 21.
    H.R. Park, S.H. Lee, M.Y. Song, J. Ceram. Process. Res. 17, 1292 (2016)Google Scholar
  22. 22.
    M.Y. Song, Y.J. Kwak, S.H. Lee, H.R. Park, Korean J. Met. Mater. 54, 210 (2016)CrossRefGoogle Scholar
  23. 23.
    M.Y. Song, I.H. Kwon, S.N. Kwon, C.G. Park, S.H. Hong, J.S. Bae, D.R. Mumm, J. Alloys Compd. 415, 266 (2006)CrossRefGoogle Scholar
  24. 24.
    M.Y. Song, H.R. Park, S.N. Kwon, J. Indus. Eng. Chem. 21, 378 (2015)CrossRefGoogle Scholar
  25. 25.
    M.Y. Song, Y.J. Kwak, S.H. Lee, H.R. Park, Korean J. Met. Mater. 52, 293 (2014)CrossRefGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    H.R. Nam, J.-H. Ahn, J. Kor. Powd. Met. Inst. 20, 258 (2013)CrossRefGoogle Scholar
  29. 29.
    S.-H. Hong, M.Y. Song, Korean J. Met. Mater. 54, 125 (2016)CrossRefGoogle Scholar
  30. 30.
    S.-H. Hong, M.Y. Song, Korean J. Met. Mater. 54, 358 (2016)CrossRefGoogle Scholar
  31. 31.
    M.Y. Song, Y.J. Kwak, H.R. Park, Korean J. Met. Mater. 54, 503 (2016)CrossRefGoogle Scholar
  32. 32.
    H.R. Park, Y.J. Kwak, M.Y. Song, Korean J. Met. Mater. 55, 656 (2017)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Division of Advanced Materials EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Hydrogen & Fuel Cell Research Center, Engineering Research InstituteChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations