Metals and Materials International

, Volume 24, Issue 2, pp 371–379 | Cite as

Microstructure and High Temperature Oxidation Property of Fe–Cr–B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

  • Yeun-Ah Joo
  • Young-Kyun Kim
  • Tae-Sik Yoon
  • Kee-Ahn Lee


This study investigated the microstructure and high temperature oxidation property of Fe–Cr–B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe–Cr–B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.


Fe–Cr–B based alloy Powder injection molding Metal/ceramic composite Three dimensional network structure Oxidation mechanism 


  1. 1.
    A. Rottger, J. Lentz, W. Theisen, Mater. Des. 88, 420 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Ma, J. Xing, H. Fu, Y. Gao, J. Zhang, Acta Mater. 60, 831 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Gun, M. Simsir, Acta Phys. Pol. A 131, 443 (2017)CrossRefGoogle Scholar
  4. 4.
    K.I. Parashivamurthy, R.K. Kumar, S. Seetharamu, M.N. Chandrasekharaiah, J. Mater. Sci. 36, 4519 (2001)CrossRefGoogle Scholar
  5. 5.
    C.K. Kim, C.Y. Son, D.J. Ha, T.S. Yoon, S. Lee, N.J. Kim, J. Korean Inst. Met. Mater. 45, 80 (2007)Google Scholar
  6. 6.
    Y.H. Lee, T.S. Yoon, S.H. Ahn, C.S. Lee, J. Korean Inst. Met. Mater. 40, 1249 (2002)Google Scholar
  7. 7.
    S.K. Ahn, S.J. Park, S. Lee, S.V. Atre, R.M. German, Powder Technol. 193, 162 (2009)CrossRefGoogle Scholar
  8. 8.
    M.C. Shim, K.S. Kim, K.S. Cho, J.S. Kim, K.A. Lee, J. Korean Inst. Met. Mater. 52, 327 (2014)CrossRefGoogle Scholar
  9. 9.
    H.J. Sung, T.K. Ha, S. Ahn, Y.W. Chang, J. Mater. Process. Technol. 130–131, 321 (2002)CrossRefGoogle Scholar
  10. 10.
    K. Lee, D.H. Nam, S. Lee, C.P. Kim, Mater. Sci. Eng. A 428, 124 (2006)CrossRefGoogle Scholar
  11. 11.
    H.J. Kim, S. Grossi, Y.G. Kweon, Met. Mater. Int. 5, 63 (1999)CrossRefGoogle Scholar
  12. 12.
    H.J. Kim, B.H. Yoon, C.H. Lee, Wear 249, 846 (2002)CrossRefGoogle Scholar
  13. 13.
    C.Y. Son, T.S. Yoon, S. Lee, Metall. Mater. Trans. A 40A, 1110 (2009)CrossRefGoogle Scholar
  14. 14.
    A.A. Sorour, Thesis, pp. 19–28. McGill University, Montreal (2014)Google Scholar
  15. 15.
    L. Yijian, H. Jian, J. Mater. Sci. 26, 2833 (1991)CrossRefGoogle Scholar
  16. 16.
    I. Goldfarb, W.D. Kaplan, S. Ariely, E.M. Bamberger, Philos. Magn. A 72, 963 (1995)CrossRefGoogle Scholar
  17. 17.
    C. Guo, J. Mater. Sci. 39, 1109 (2004)CrossRefGoogle Scholar
  18. 18.
    K.-H.Z. Gahr, Tribol. Int. 31, 587 (1998)CrossRefGoogle Scholar
  19. 19.
    J.E. Croll, G.R. Wallwork, Oxid. Met. 4, 121 (1972)CrossRefGoogle Scholar
  20. 20.
    S.K. Kim, D.B. Lee, J. Korean Inst. Surf. Eng. 45, 61 (2012)CrossRefGoogle Scholar
  21. 21.
    V.K. Tolpygo, D.R. Clarke, Acta Mater. 14, 5167 (1998)CrossRefGoogle Scholar
  22. 22.
    Y. Shibuya, T. Endo, Tetsu. To. Hagane. 64, 1396 (1978)CrossRefGoogle Scholar
  23. 23.
    R. Yilmaz, M.R. Ekici, J. Ach. Mater. Manuf. Eng. 31, 23 (2008)Google Scholar
  24. 24.
    O.Yu. Goncharov, O.M. Kanunnikova, Inorg. Mater. 43, 588 (2007)CrossRefGoogle Scholar
  25. 25.
    J.A. Kohn, W.F. Nye, G.K. Gaule, Boron Synthesis, Structure, and Properties, 1st edn. (Springer, Boston, 1960), pp. 175–189CrossRefGoogle Scholar
  26. 26.
    X. Zheng, R.A. Rapp, Oxid. Met. 48, 527 (1977)CrossRefGoogle Scholar
  27. 27.
    T.A. Bither, C.G. Frederick, T.E. Gier, J.F. Weiher, H.S. Young, Solid State Commun. 8, 109 (1970)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonKorea
  2. 2.Bestner CoEumseongKorea

Personalised recommendations