Metals and Materials International

, Volume 24, Issue 2, pp 307–313 | Cite as

Effects of Neodymium and Calcium on the Thermal Stability of AZ71 Magnesium Alloys

  • Cheng-Feng Yue
  • Shi-Jei Huang
  • Jhewn-Kuang ChenEmail author
  • Hsien-Tsung Li
  • Kam-Shau Chan


The effects of an addition of 0–2 wt% Nd on thermal stability of 0–3 wt% Ca-containing modified AZ71 magnesium alloys was investigated. The ignition temperature was found to increase from that of AZ71, 574, to 825 °C with the addition of 0.5 wt% Ca and 1 wt% Nd. The ignition temperature was further increased to 1114 °C when 3 wt% Ca was added. The Ca- and Nd-added AZ71 was isothermally maintained at a temperature of 500 °C in air for 12 h. The MgO–CaO–Nd2O3 formed on the surface to improve the thermal stability of the AZ71–xCa–yNd alloys. While both the tensile strength and ductility decreased with the Ca concentration in the alloy, an addition of 1 wt% Nd was found able to alleviate the degradation effects of Ca on the tensile strength and ductility at 170 °C. Both solid solution formation and precipitation strengthening contributed to the increase in toughness. AZ71 containing 0.5–2 wt% Ca and 1 wt% Nd provides the optimum combination of ignition resistance and mechanical properties.


Alloys Intermetallics Casting Mechanical properties Oxidation Auger electron spectroscopy (AES) 



This work was partly supported by the Ministry of Science and Technology of Taiwan under research Grant No. MOST 103-2221-E-027-009 and Foxconn Technology Group.


  1. 1.
    B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001)CrossRefGoogle Scholar
  2. 2.
    B. Gwynne, P. Lyon, in Triennial International Aircraft Fire and Cabin Safety Research Conference (2007)Google Scholar
  3. 3.
    M.M. Avedesian, H. Baker, ASM Specialty Handbook—Magnesium and Magnesium Alloys (ASM, Metals Park, 1999)Google Scholar
  4. 4.
    F. Czerwinski, Corros. Sci. 86, 1 (2014)CrossRefGoogle Scholar
  5. 5.
    G. Wu, Y. Fan, H. Gao, C. Zhai, Y.P. Zhu, Mater. Sci. Eng. A 408, 255 (2005)CrossRefGoogle Scholar
  6. 6.
    S.H. Ha, J.K. Lee, H.H. Jo, S.B. Jung, K.K. Shae, Rare Metals 25, 150 (2006)CrossRefGoogle Scholar
  7. 7.
    D.B. Lee, Corros. Sci. 70, 243 (2013)CrossRefGoogle Scholar
  8. 8.
    K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 403, 276–280 (2005)CrossRefGoogle Scholar
  9. 9.
    S.L. Cheng, G.C. Yang, J.F. Fan, Y.J. Li, Y.H. Zhou, Trans. Nonferr. Metals Soc. China 19, 299–304 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Sakamoto, S. Akiyama, J. Mater. Sci. Lett. 16(9), 1048 (1997)CrossRefGoogle Scholar
  11. 11.
    J.F. Fan, C.L. Yang, G. Han, S. Fang, W.D. Yang, B.S. Xu, J. Alloys Compd. 509, 2137 (2011)CrossRefGoogle Scholar
  12. 12.
    N.V. Ravi Kumar, J.J. Blandin, M. Suery, E. Grosjean, Scr. Mater. 49, 225 (2003)CrossRefGoogle Scholar
  13. 13.
    J.S. Zhang, Y. Sun, W.L. Cheng, Z.-P. Que, Y.-M. Li, L. Liushan, J. Alloys Compd. 554, 110 (2013)CrossRefGoogle Scholar
  14. 14.
    J.K. Chen, Y.C. Chen, H.T. Li, K.S. Chan, C.J. Chang, Trans. Nonferr. Metals 25, 3223–3231 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Srinivasan, J. Swaminathan, M.K. Gunjan, U.T.S. Pillai, B.C. Pai, Mater. Sci. Eng. A 527, 1395 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Mahmudi, F. Kabirian, Z. Nematollahi, Mater. Des. 32, 2583 (2011)CrossRefGoogle Scholar
  17. 17.
    J.E. Hillis, The international program to identify alternatives to SF6 for Magnesium melt protection. The International Conference on SF6 and the Environment. Sand Diego, CA, 22 Nov (2002)Google Scholar
  18. 18.
    T.S. Shih, J.B. Liu, P.S. Wei, Mater. Chem. Phys. 104, 497 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Luo, M.O. Pekguleryuz, J. Mater. Sci. 29, 5259 (1994)CrossRefGoogle Scholar
  20. 20.
    F.U. Islam, M. Medraj, Calphad 29, 289–302 (2005)CrossRefGoogle Scholar
  21. 21.
    A. Suzuki, N.D. Saddock, J.W. Jones, T.M. Pollock, Acta Mater. 53, 2823–2834 (2005)CrossRefGoogle Scholar
  22. 22.
    A.V. Koltygin, V.E. Bazhenov, E.A. Belova, A.A. Nikitina, J. Magnes. Alloys 1, 224–229 (2013)CrossRefGoogle Scholar
  23. 23.
    Q. Wang, W. Chen, X. Zeng, Y. Lu, W. Ding, Y. Zhu, X. Xu, J. Mater. Sci. 36, 3035–3040 (2001)CrossRefGoogle Scholar
  24. 24.
    H.T. Son, J.S. Lee, I.H. Oh, D.G. Kim, K. Yoshimi, K. Maruyama, Mater. Trans. 49, 1025–1031 (2008)CrossRefGoogle Scholar
  25. 25.
    F. Li, W.Y. Peh, V. Nagarajan, M.K. Ho, A. Danno, B.W. Chua, M.J. Tan, Mater. Des. 99, 37–43 (2016)CrossRefGoogle Scholar
  26. 26.
    H.H. Liebermann (ed.), Rapidly Solidified Alloys: Processes, Structures, Properties, Applications (CRC Press, Boca Raton, 1993)Google Scholar
  27. 27.
    G.L. Song (ed.), Corrosion Prevention of Magnesium Alloys (Woodhead, Cambridge, 2013)Google Scholar
  28. 28.
    N.B. Pilling, R.E. Bedworth, J. Inst. Metals 29, 529 (1923)Google Scholar
  29. 29.
    M.O. Pekguleryuz, K. Kainer, A.A. Kaya, Fundamentals of Magnesium Alloy Metallurgy (Woodhead, Cambridge, 2013)CrossRefGoogle Scholar
  30. 30.
    D.B. Lee, L.S. Hong, Y.J. Kim, Mater. Trans. 49, 1084–1088 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Cheng-Feng Yue
    • 1
  • Shi-Jei Huang
    • 1
  • Jhewn-Kuang Chen
    • 1
    Email author
  • Hsien-Tsung Li
    • 2
  • Kam-Shau Chan
    • 2
  1. 1.Department of Materials and Mineral Resources EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Foxconn Technology Co. Ltd.New Taipei CityTaiwan, ROC

Personalised recommendations