Advertisement

Characterization of Hot Deformation Behavior and Processing Maps of Ti–19Al–22Mo Alloy

  • P. L. Narayana
  • Cheng-Lin Li
  • Jae-Keun Hong
  • Seong-Woo Choi
  • Chan Hee Park
  • Seong-Woong Kim
  • Seung Eon Kim
  • N. S. ReddyEmail author
  • Jong-Taek YeomEmail author
Article
  • 22 Downloads

Abstract

The isothermal compression tests were carried out to study the hot deformation behavior and microstructure evolution of Ti–19Al–22Mo alloy. The samples were deformed in the temperature range from 1100 to 1250 °C with an interval of 50 °C, strain rate ranging from 0.01 to 1 s−1 and the height reduction of 50% using Gleeble-3800 thermal–mechanical simulator. By using this experimental data an artificial neural network (ANN) model was developed and evaluated with unseen data. Further, the developed ANN model was used to predict flow stress correction from adiabatic heating at finer intervals of strain rates and temperatures. The predicted isothermal flow stress values were utilized to construct processing maps for Ti–19Al–22Mo alloy at true strain of 0.4 and 0.6. The maximum efficiency was noticed at 1100 °C with the strain rate of 0.01 s−1 associated with dynamic recrystallization and dynamic recovery. The deformation conditions of the instability domains in processing map showed wedge cracking and flow localization. Using the processing maps safe working parameters for hot deformation of Ti–19Al–22Mo alloy was identified.

Keywords

Ti–19Al–22Mo alloy Hot compression test Artificial neural networks Processing map Microstructure 

Notes

Acknowledgments

This study was supported by grants from the Fundamental Research Program (PNK5520/PNK5700) of the Korea Institute of Materials Science.

References

  1. 1.
    K. Kothari, R. Radhakrishnan, N.M. Wereley, Prog. Aerosp. Sci. 55, 1 (2012)CrossRefGoogle Scholar
  2. 2.
    F. Froes, C. Suryanarayana, D. Eliezer, J. Mater. Sci. 27, 5113 (1992)CrossRefGoogle Scholar
  3. 3.
    G. Lütjering, J.C. Williams, Titanium (Springer, Berlin, 2007), pp. 1–379Google Scholar
  4. 4.
    M. Kimura, K. Hashimoto, H. Morikawa, Mater. Sci. Eng. A 152, 54 (1992)CrossRefGoogle Scholar
  5. 5.
    C.Z. Qiu, L. Yong, L. Huang, W. Zhang, L. Bin, L. Bin, Trans. Nonferr. Met. Soc. China 22, 521 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Thomas, S. Naka, T. Khan, Mater. Trans.35, 787 (1994)CrossRefGoogle Scholar
  7. 7.
    Y. Lu, J. Yamada, J. Nakamura, K. Yoshimi, H. Kato, J. Alloys. Compd. 696, 130 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Premkumar, A.K. Singh, Intermetallics 18, 199 (2010)CrossRefGoogle Scholar
  9. 9.
    W. Sha, K.L. Edwards, Mater. Des. 28, 1747 (2007)CrossRefGoogle Scholar
  10. 10.
    W.Y. Zhang, Appl. Mech. Mater. 20–23, 1211 (2010)CrossRefGoogle Scholar
  11. 11.
    H.K.D.H. Bhadeshia, ISIJ Int. 39, 966 (1999)CrossRefGoogle Scholar
  12. 12.
    N.S. Reddy, J. Krishnaiah, S.G. Hong, J.S. Lee, Mater. Sci. Eng. A 508, 93 (2009)CrossRefGoogle Scholar
  13. 13.
    N.S. Reddy, B.B. Panigrahi, C.M. Ho, J.H. Kim, C.S. Lee, Comput. Mater. Sci. 107, 175 (2015)CrossRefGoogle Scholar
  14. 14.
    A.K. Singh, S. Kumar, S. Banumathy, R.K. Mandal, Philos. Mag. 87, 5435 (2007)CrossRefGoogle Scholar
  15. 15.
    X. Ma, W. Zeng, B. Xu, Y. Sun, C. Xue, Y. Han, Intermetallics 20, 1 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Zhou, Q. Peng, H. Yang, X. Zhou, R. Liu, Y. Peng, F. Zhong, J. Nucl. Mater. 448, 153 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Fan, H. Kou, M. Lai, B. Tang, H. Chang, J. Li, Rare Met. Mater. Eng. 43, 808 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Ke, M.Q. Li, Trans. Nonferr. Met. Soc. China 26, 1583 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Yan, E. Yu, Y. Zhao, Mater. Des. 50, 574 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Liying, Y. Guanjun, G. Peng, M. Xiaonan, Z. Yongqing, Z. Lian, Rare Met. Mat. Eng. 39, 1505 (2010)CrossRefGoogle Scholar
  21. 21.
    Y. Prasad, K. Rao, S. Sasidhar, Hot Working Guide: A Compendium of Processing Maps (ASM International, Geauga County, 2015), pp. 1–625Google Scholar
  22. 22.
    G.E. Dieter, H.A. Kuhn, S.L. Semiatin, Handbook of Workability and Process Design (ASM International, Geauga County, 2003), pp. 1–389Google Scholar
  23. 23.
    Y.V.R.K. Prasad, S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps (ASM International, Geauga County, 1997), pp. 1–545Google Scholar
  24. 24.
    T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Mater. Sci. Eng. A 284, 184 (2000)CrossRefGoogle Scholar
  25. 25.
    Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1998)CrossRefGoogle Scholar
  26. 26.
    S.L. Semiatin, V. Seetharaman, I. Weiss, JOM 49, 33 (1997)CrossRefGoogle Scholar
  27. 27.
    D. Morris, D. Harries, J. Mater. Sci. 12, 1587 (1977)CrossRefGoogle Scholar
  28. 28.
    G. Zhou, H. Ding, F. Cao, B. Zhang, J. Mater. Sci. Technol. 30, 217 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • P. L. Narayana
    • 1
    • 2
  • Cheng-Lin Li
    • 1
  • Jae-Keun Hong
    • 1
  • Seong-Woo Choi
    • 1
  • Chan Hee Park
    • 1
  • Seong-Woong Kim
    • 1
  • Seung Eon Kim
    • 1
  • N. S. Reddy
    • 2
    Email author
  • Jong-Taek Yeom
    • 1
    Email author
  1. 1.Advanced Metals DivisionKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.Engineering Research Institute, School of Materials Science and EngineeringGyeongsang National UniversityJinjuRepublic of Korea

Personalised recommendations