Metals and Materials International

, Volume 25, Issue 4, pp 838–845 | Cite as

Effect of Inhomogeneous Nucleation of Hydride at α/β Phase Boundary on Microstructure Evolution of Zr–2.5 wt%Nb Pressure Tube

  • Sung-Soo Kim
  • Sangyeob Lim
  • Dong-Hyun Ahn
  • Gyeong-Geun Lee
  • Kunok ChangEmail author


We analyzed the microstructural characteristics such as number density and length and width of hydrides in Zr–2.5 wt%Nb pressure tube. The hydrogen was charged cathodically and the hydride-contained sample was evaluated using the advanced analysis methodologies. We performed a differential scanning calorimetry analysis to more quantitatively understand the thermodynamics of the hydride formation/growth process. We characterized the micrograph of hydride-contained Zr samples to estimate the microstructural characteristics of the matrix and hydrides. We investigated effects of hydrogen concentration and microstructure of matrix on determining microstructural measures of the hydrides. Particularly, we found that β phase in the matrix becomes isolated during the heat treatment same or above 475 °C and this change increases the inhomogeneous nucleation sites significantly. We claim that the microstructure change of this matrix phase greatly increases the number density of hydride.


Pressure tube Delayed hydride cracking Zirconium hydride 



This work was supported by a National Research Foundation of Korea (NRF) grant funded by the government of Korea (Ministry of Science and ICT) (NRF-2017M2A8A4015157). Kunok Chang was also supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20184030202170).


  1. 1.
    L.B. Golden, I.R. Lane, W.L. Acherman, Corrosion resistance of titanium, zirconium, and stainless steel. Ind. Eng. Chem. 44, 1930–1939 (1952)CrossRefGoogle Scholar
  2. 2.
    B. Lustman, F. Kerze, The Metallurgy of Zirconium, vol. 4 (McGraw-Hill Book Company, London, 1955)Google Scholar
  3. 3.
    T. Filburn, S. Bullard (eds.), "Nuclear Fuel, Cladding, and the “Discovery” of Zirconium." in Three Mile Island, Chernobyl and Fukushima (Springer, Cham, 2016) pp. 105–114. CrossRefGoogle Scholar
  4. 4.
    S.Y. Park, J.H. Kim, B.K. Choi, Y.H. Jeong, Crack initiation and propagation behavior of zirconium cladding under an environment of iodine-induced stress corrosion. Met. Mater. Int. 194(13), 155–163 (2007)CrossRefGoogle Scholar
  5. 5.
    D. Northwood, U. Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys. Int. Met. Rev. 28, 92–121 (1983)CrossRefGoogle Scholar
  6. 6.
    J. Dubey, S. Wadekar, R. Singh, T. Sinha, J. Chakravartty, Assessment of hydrogen embrittlement of Zircaloy-2 pressure tubes using unloading compliance and load normalization techniques for determining J–R curves. J. Nucl. Mater. 264, 20–28 (1999)CrossRefGoogle Scholar
  7. 7.
    L. Simpson, C. Cann, Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys. J. Nucl. Mater. 87, 303–316 (1979)CrossRefGoogle Scholar
  8. 8.
    Y.S. Kim, Driving force for delayed hydride cracking of zirconium alloys. Met. Mater. Int. 11, 29–38 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Arora, Acoustic emission studies of slow crack growth in Zr–2.5% Nb (1978)Google Scholar
  10. 10.
    S.S. Kim, S.C. Kwon, Y.S. Kim, The effect of texture variation on delayed hydride cracking behavior of 206 Zr–2.5% Nb plate. J. Nucl. Mater. 273, 52–59 (1999)CrossRefGoogle Scholar
  11. 11.
    M. Puls, On the consequences of hydrogen supersaturation effects in Zr alloys to hydrogen ingress and delayed hydride cracking. J. Nucl. Mater. 165, 128–141 (1989)CrossRefGoogle Scholar
  12. 12.
    Q. Dong, H. Yu, Z. Yao, F. Long, L. Balogh, M.R. Daymond, Study of microstructure and precipitates of a Zr–2.5 Nb–0.5 Cu CANDU spacer material. J. Nucl. Mater. 481, 153–163 (2016)CrossRefGoogle Scholar
  13. 13.
    M.V. Alvarez, J. Santisteban, G. Domizzi, J. Almer, Phase and texture analysis of a hydride blister in a Zr–2.5% Nb tube by synchrotron X-ray diffraction. Acta Mater. 59, 2210–2220 (2011)CrossRefGoogle Scholar
  14. 14.
    E. Tulk, M. Kerr, M. Daymond, Study on the effects of matrix yield strength on hydride phase stability in Zircaloy-2 and Zr 2.5 wt% Nb. J. Nucl. Mater. 425, 93–104 (2012)CrossRefGoogle Scholar
  15. 15.
    M.V. Alvarez, J. Santisteban, P. Vizcaino, A. Flores, A. Banchik, J. Almer, Hydride reorientation in Zr–2.5Nb studied by synchrotron X-ray diffraction. Acta Mater. 60, 6892–6906 (2012)CrossRefGoogle Scholar
  16. 16.
    P. Vizcaíno, J. Santisteban, M.V. Alvarez, A. Banchik, J. Almer, Effect of crystallite orientation and external stress on hydride precipitation and dissolution in Zr–2.5% Nb. J. Nucl. Mater. 447, 82–93 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Root, R. Fong, Neutron diffraction study of the precipitation and dissolution of hydrides in Zr–2.5 Nb pressure tube material. J. Nucl. Mater. 232, 75–85 (1996)CrossRefGoogle Scholar
  18. 18.
    J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4. J. Nucl. Mater. 22, 292–303 (1967)CrossRefGoogle Scholar
  19. 19.
    G. Shek, M. Jovanoviċ, H. Seahra, Y. Ma, D. Li, R. Eadie, Hydride morphology and striation formation during delayed hydride cracking in Zr–2.5% Nb. J. Nucl. Mater. 231, 221–230 (1996)CrossRefGoogle Scholar
  20. 20.
    M. Puls, The influence of hydride size and matrix strength on fracture initiation at hydrides in zirconium alloys. Metall. Trans. A 19, 1507–1522 (1988)CrossRefGoogle Scholar
  21. 21.
    R. Singh, R. Kishore, T. Sinha, B. Kashyap, Hydride blister formation in Zr–2.5 wt% Nb pressure tube alloy. J. Nucl. Mater. 301, 153–164 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Barrow, C. Toffolon-Masclet, J. Almer, M. Daymond, The role of chemical free energy and elastic strain in the nucleation of zirconium hydride. J. Nucl. Mater. 441, 395–401 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4. J. Nucl. Mater. 43, 330–338 (1972)CrossRefGoogle Scholar
  24. 24.
    D. Khatamian, Effect of β–Zr decomposition on the solubility limits for H in Zr–2.5 Nb. J. Alloys Compd. 356, 22–26 (2003)CrossRefGoogle Scholar
  25. 25.
    S.A. Parodi, L.M. Ponzoni, M.E. De Las Heras, J.I. Mieza, G. Domizzi, Study of variables that affect hydrogen solubility in α + β Zr-alloys. J. Nucl. Mater. 477, 305–317 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Khatamian, Z. Pan, M. Puls, C. Cann, Hydrogen solubility limits in Excel, an experimental zirconium-based alloy. J. Alloys Compd. 231, 488–493 (1995)CrossRefGoogle Scholar
  27. 27.
    K. Chang, L.Q. Chen, Quantitative evaluation of particle pinning force on a grain boundary using the phase-field method. Modell. Simul. Mater. Sci. Eng. 20, 055004 (2012)CrossRefGoogle Scholar
  28. 28.
    N. Dupin, I. Ansara, C. Servant, C. Toffolon, C. Lemaignan, J. Brachet, A thermodynamic database for zirconium alloys. J. Nucl. Mater. 275, 287–295 (1999)CrossRefGoogle Scholar
  29. 29.
    Y.S. Lim, H.G. Kim, Y.H. Jeong, Recrystallization behavior of Zr–xNb alloys. Mater. Trans. 245(49), 1702–1705 (2008)CrossRefGoogle Scholar
  30. 30.
    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys (Revised Reprint) (CRC Press, Boca Raton, 2009)Google Scholar
  31. 31.
    V. Perovic, G. Weatherly, The nucleation of hydrides in a Zr–2.5 wt% Nb alloy. J. Nucl. Mater. 126, 160–169 (1984)CrossRefGoogle Scholar
  32. 32.
    X. Guo, S. Shi, Q. Zhang, X. Ma, An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part I: smooth specimen. J. Nucl. Mater. 378, 110–119 (2008)CrossRefGoogle Scholar
  33. 33.
    W. Ostwald, Analytische Chemie. Z. Phys. Chem. 37, 385 (1901)Google Scholar
  34. 34.
    I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)CrossRefGoogle Scholar
  35. 35.
    M. Hillert, On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965)CrossRefGoogle Scholar
  36. 36.
    D. Joanes, C. Gill, Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. Ser. D (Stat.) 47, 183–189 (1998)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Nuclear Materials Research DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Nuclear Engineering DepartmentKyunghee UniversityYonginRepublic of Korea

Personalised recommendations