Role of Heat Treatment on the Fabrication and Electrochemical Property of Ordered TiO2 Nanotubular Layer on the As-Cast NiTi

  • Fatemeh Mohammadi
  • Mahshid KharazihaEmail author
  • Ali Ashrafi


We investigated the effect of various heat treatment processes on the formation and electrochemical properties of ordered TiO2 nanotubes (TNTs) on NiTi. In this respect, after solution treatment of as-cast NiTi samples at 900 °C for 1 h, four different heat-treated groups were examined consisting of furnace-cooled sample, water-quenched sample, water-quenched/300 °C-aged treated (300T-NiTi) and water-quenched/500 °C-aged treated (500T-NiTi) samples. Consequently, heat-treated samples were anodized in ethylene glycol solution containing NH4F. Results showed that the microstructure, chemical composition and grain size of the NiTi samples depended on the heat treatment process. Water-quenching and subsequent aging process provided fine precipitations distributed in the grain boundaries and reduced grain size. Furthermore, it was found that TNTs with various distributions and microstructures could be developed depending on the heat-treatment process of NiTi samples as well as anodization voltage and time. Noticeably, anodization of 500T-NiTi samples resulted in formation of well-distributed TNTs with diameters of 30 ± 5 nm. Moreover, heat-treatment process as well as TNT formation resulted in significantly enhanced corrosion resistance of as-cast NiTi substrate and reduced Ni release, depending on the treatment process. Regarding potential applications, anodization of water-quenched and 500 °C aged treated NiTi at 50 V for 10 min could provide nano-scaled biofunctional coating to promote the biological applications of NiTi implants.


Anodic oxidation Nanotube arrays NiTi alloy Heat treatment process 

Supplementary material

12540_2018_228_MOESM1_ESM.docx (4.5 mb)
Supplementary material 1 (DOCX 4580 kb)


  1. 1.
    F.T. Cheng, P. Shi, G.K.H. Pang, J. Alloy. Compd. 438, 238 (2007)Google Scholar
  2. 2.
    D. Kapoor, Johnson Matthey Technol. Rev. 61(1), 66 (2017)Google Scholar
  3. 3.
    C.W. Chan, L. Carson, G.C. Smith, Surf. Coat. Technol. 349, 488 (2018)Google Scholar
  4. 4.
    R. Hang, X. Huang, L. Tian, Electrochim. Acta 70, 382 (2012)Google Scholar
  5. 5.
    G. Tepe, J. Schmehl, H.P. Wendel, S. Schaffner, Biomaterials 27, 643 (2006)Google Scholar
  6. 6.
    S. Shabalovskaya, J. Anderegg, J. Humbeeck, Acta Biomater. 4, 447 (2008)Google Scholar
  7. 7.
    A. Shanaghi, P.K. Chu, Surf. Coat. Technol. (2018) (in press) Google Scholar
  8. 8.
    Z. Shi, J. Wang, Z. Wang, Y. Qiao, T. Xiong, Y. Zheng, Coatings 8(10), 346 (2018)Google Scholar
  9. 9.
    S.N. Meisner, I.V. Vlasov, E.V. Yakovlev, S.V. Panin, L.L. Meisner, F.A. D’yachenko, Mater. Sci. Eng., A 740–741, 381 (2019)Google Scholar
  10. 10.
    M. Pourmahdavi, N. Parvin, Adv. Mater. Res. 829, 431 (2014)Google Scholar
  11. 11.
    J.-H. Kim, K. Zhu, Y. Yan, C.L. Perkins, A.J. Frank, Nano Lett. 10, 4099 (2010)Google Scholar
  12. 12.
    R. Hang, M. Zong, L. Bai, Electrochem. Commun. 71, 28 (2016)Google Scholar
  13. 13.
    Ch. Huang, Y. Xie, L. Zhou, H. Huan, Smart Mater. Struct. 18, 024003 (2009)Google Scholar
  14. 14.
    G. Hou, Y. Xie, L. Wu, Int. J. Hydrogen Energy 41, 9295 (2016)Google Scholar
  15. 15.
    R. Hang, Y. Liu, L. Zhao, A. Gao, L. Bai, X. Huang, X. Zhang, B. Tang, P.K. Chu, Sci. Rep. 4, 1 (2014)Google Scholar
  16. 16.
    R. Hang, Y. Liu, S. Liu, L. Bai, A. Gao, X. Zhang, X. Huang, B. Tang, P.K. Chu, Corros. Sci. 103, 173 (2016)Google Scholar
  17. 17.
    S.C. Roy, M. Paulose, C.A. Grimes, Biomaterials 28, 4667 (2007)Google Scholar
  18. 18.
    P. Lee, Al. Cerchiari, T.A. Desai, Nano Lett. 14, 5021 (2014)Google Scholar
  19. 19.
    F. Nasirpouri, I. Yousefi, E. Moslehifard, J. Khalil Allafi, Surf. Coat. Technol. 315, 163 (2017)Google Scholar
  20. 20.
    L. Peng, M.L. Eltgroth, T.J. LaTempa, Biomaterials 30, 1268 (2009)Google Scholar
  21. 21.
    M. Sinn Aw, K. Gulati, D. Losic, J. Biomater. Nanobiotechnol. 2, 477 (2011)Google Scholar
  22. 22.
    S. Rana, J. Rawat, M.M. Sorensson, R.D.K. Misra, Acta Biomater. 1, 691 (2006)Google Scholar
  23. 23.
    B.K. Sunkara, R.D. Misra, Acta Biomater. 4(2), 273 (2008)Google Scholar
  24. 24.
    S. Ranaab, J. Rawatab, M.M. Sorenssonac, R.D.K. Misra, Acta Biomater. 2(4), 421 (2006)Google Scholar
  25. 25.
    R. Shohal, M.M. Sorensson, R.S. Srivastava, R.D.K. Misra, Mater. Sci. Eng., B 119(2), 144 (2005)Google Scholar
  26. 26.
    R. Venkatasubramanian, R.S. Srivastava, R.D.K. Misra, Mater. Sci. Technol. 24, 589 (2013)Google Scholar
  27. 27.
    S. RanaR, D.K. Misra, Appl. Mater. Sci. Eng. 57, 65 (2005)Google Scholar
  28. 28.
    K.W.K. Yeunga, K.M.C. Cheunga, W.W. Lua, C.Y. Chun, Mater. Sci. Eng. 383, 213 (2004)Google Scholar
  29. 29.
    A. Etaati, A. Shokuhfar, E. Omrani, P. Movahed, H. Bolvard, Defect Diffus. Forum 297, 489 (2010)Google Scholar
  30. 30.
    M. Paryab, A. Nasr, O. Bayat, V. Abouei, A. Eshraghi, Assoc. Metall. Eng. Serbia 16, 123 (2010)Google Scholar
  31. 31.
    J. Shu-yong, Z. Yan-qiu, F. Hong-tao, Trans. Nonferrous Met. Soc. China 22, 1401 (2012)Google Scholar
  32. 32.
    J. Shu-yong, Z. Yan-qiu, Trans. Nonferrous Met. Soc 22, 90 (2012)Google Scholar
  33. 33.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary alloy phase diagrams, 2nd edition, vol 3 (Materials Park, OH: ASM International), p. 2874 (1990)Google Scholar
  34. 34.
    J. Bhagyaraj, K.V. Ramaiah, C.N. Saikrishna, Alloys Compd. 735, 1145 (2013)Google Scholar
  35. 35.
    E. Omrani, A. Shokuhfar, A. Etaati, A. Dorri, A. Saatian, Defect Diffus. Forum 297–301, 344 (2010)Google Scholar
  36. 36.
    J. Ridhwan, M. Syafiq, M.H.M. Hafidza, J. Mech. Eng. Technol. 6, 87 (2014)Google Scholar
  37. 37.
    S.W. Robertso, X.Y. Gong, J. Mater. Sci. 41, 621 (2006)Google Scholar
  38. 38.
    A.R. Pelton, J. DiCello, S. Miyazaki, Min. Invas. Ther. Allied Technol. 9(1), 107 (2000)Google Scholar
  39. 39.
    K. Otuka, X. Ren, Mater. Sci. 50(5), 511 (2005)Google Scholar
  40. 40.
    C. Cheng-lin, C. Jonathan-CY, C. Paul-K, Trans. Nonferrous. Met. Soc. 16, 49 (2006)Google Scholar
  41. 41.
    ShH El-Hadad, K. Ibrahim, L. Wagner, Hindawi Publishing Corporation, J. Metall. 20, 1 (2014)Google Scholar
  42. 42.
    J.A. Lozano, B.S. Peña, G.F. Vander Voort, Materials 7, 4224 (2014)Google Scholar
  43. 43.
    S. Yoriya, W. Kittimeteeworakul, N. Punprasert, J. Chem. Chem. Eng 6, 686 (2012)Google Scholar
  44. 44.
    K.A. Saharudin, S. Sreekantan, Adv. Mater. Res. 173, 102 (2011)Google Scholar
  45. 45.
    Ch. Liu, Y. Wang, M. Wang, W. Huang, P.K. Chu, Surf. Coat. Technol. 206, 63 (2011)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Fatemeh Mohammadi
    • 1
  • Mahshid Kharaziha
    • 1
    Email author
  • Ali Ashrafi
    • 1
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations