Metals and Materials International

, Volume 25, Issue 3, pp 594–605 | Cite as

Hot Deformation Behavior of V Micro-Alloyed TWIP Steel During Hot Compression

  • Hojun Gwon
  • Sunmi ShinEmail author
  • Jongbae JeonEmail author
  • Taejin Song
  • Sungkyu Kim
  • Bruno C. De Cooman


High manganese twinning induced plasticity (TWIP) steel is an attractive material for automotive applications as its use could result in an improved vehicle fuel efficiency and a superior passenger safety. Due to the limited research on the hot deformation behaviour of High Mn steel, the selection of suitable operating conditions for the hot rolling process is challenging. The present contribution focusses on the hot deformation behaviour and the dynamic recrystallization kinetics of V micro-alloyed high manganese TWIP steel, by means of single-hit compression test in the temperature range of 850–1000 °C and the strain rate range of 0.1–10 s−1. The activation energy for hot deformation and the processing map of a V-free TWIP steel and a V-added TWIP steel were compared by analysing their stress–strain curves. The V-added TWIP steel exhibited a higher activation energy than the V-free TWIP steel, i.e. 383.4 kJ/mol versus 372.5 kJ/mol. Processing maps based on a dynamic material model indicated that the hot workability of TWIP steel was decreased by micro-alloying with V. The effect of V on the hot deformation behaviour of TWIP steels was also analysed by means of its effect on the microstructure using the SEM-EBSD technique. The V-added TWIP steel was characterized by a higher peak stress at a lower peak strain as compared to the V-free TWIP steel, indicating that the onset of dynamic recrystallization was accelerated by the addition of V. The rapid dynamic recrystallization kinetics resulted in a smaller recrystallized grain size in the hot deformed microstructure of the V-added TWIP steel.


TWIP steel Micro-alloying Hot deformation Dynamic recrystallization 



The authors gratefully acknowledge the support of the POSCO Technical Research Laboratories in Gwangyang, Republic of Korea. The authors also acknowledge the support of the Ministry of Strategy and Finance (Code No. JA180018).


  1. 1.
    O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16, 1391–1409 (2000)CrossRefGoogle Scholar
  2. 2.
    B.C. De Cooman, K. Chin, J. Kim, New Trends Dev. Automot. Syst. Eng. (2011)Google Scholar
  3. 3.
    S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater Sci. 89, 345–391 (2017)CrossRefGoogle Scholar
  4. 4.
    J.K. Kim, M.H. Kwon, B.C. De Cooman, Acta Mater. 141, 444–455 (2017)CrossRefGoogle Scholar
  5. 5.
    B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283–362 (2018)CrossRefGoogle Scholar
  6. 6.
    K.M. Rahman, N.G. Jones, D. Dye, Mater. Sci. Eng. A 635, 133–142 (2015)CrossRefGoogle Scholar
  7. 7.
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141–168 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Allain, J.P. Chateau, O. Bouaziz, Mater. Sci. Eng. A 387–389, 143–147 (2004)CrossRefGoogle Scholar
  9. 9.
    E.P. DeGarmo, J.T. Black, R.A. Kohser, Materials and Processes in Manufacturing, 9th edn. (Wiley, Hoboken, 2003)Google Scholar
  10. 10.
    C.M. Sellars, Mater. Sci. Technol. 6, 1072–1081 (1990)CrossRefGoogle Scholar
  11. 11.
    P.H. Adler, G.B. Olson, W.S. Owen, Metall. Mater. Trans. A 17, 1725–1737 (1986)CrossRefGoogle Scholar
  12. 12.
    I.A. Yakubtsov, A. Ariapour, D.D. Perovic, Acta Mater. 47, 1271–1279 (1999)CrossRefGoogle Scholar
  13. 13.
    S. Allain, J.P. Chateau, D. Dahmoun, O. Bouaziz, Mater. Sci. Eng. A 387–389, 272–276 (2004)CrossRefGoogle Scholar
  14. 14.
    S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389, 158–162 (2004)CrossRefGoogle Scholar
  15. 15.
    L. Krüger, L.W. Meyer, U. Brûx, G. Frommeyer, O. Grässel, J. Phys. IV Fr. 110, 189–194 (2003)CrossRefGoogle Scholar
  16. 16.
    A.S. Hamada, L.P. Karjalainen, Mater. Sci. Eng. A 528, 1819–1827 (2011)CrossRefGoogle Scholar
  17. 17.
    A.S. Hamada, M.C. Somani, L.P. Karjalainen, ISIJ Int. 47, 907–912 (2007)CrossRefGoogle Scholar
  18. 18.
    F. Reyes-Calderón, I. Mejía, A. Boulaajaj, J.M. Cabrera, Mater. Sci. Eng. A 560, 552–560 (2013)CrossRefGoogle Scholar
  19. 19.
    W. Xiong, B. Wietbrock, A. Saeed-Akbari, M. Bambach, G. Hirt, Steel Res. Int. 82, 127–136 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43, 243–258 (1998)CrossRefGoogle Scholar
  21. 21.
    K. Minami, F. Siciliano Jr., T.M. Maccagno, J.J. Jonas, ISIJ Int. 36, 1507–1515 (1996)CrossRefGoogle Scholar
  22. 22.
    F.J. Humphreys, M. Hatherl, Recrystallization and Related Annealing Phenomena (Pergamon, Oxford, 1995)Google Scholar
  23. 23.
    A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 1359–1370 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Cingara, H.J. McQueen, J. Mater. Process. Technol. 36, 31–42 (1992)CrossRefGoogle Scholar
  25. 25.
    C. Zener, J.H. Hollomon, J. Appl. Phys. 15, 22–32 (1944)CrossRefGoogle Scholar
  26. 26.
    H. Mirzadeh, J.M. Cabrera, J.M. Prado, A. Najafizadeh, Mater. Sci. Eng. A 528, 3876–3882 (2011)CrossRefGoogle Scholar
  27. 27.
    X. Huang, H. Zhang, Y. Han, W. Wu, J. Chen, Mater. Sci. Eng. A 527, 485–490 (2010)CrossRefGoogle Scholar
  28. 28.
    N. Jin, H. Zhang, Y. Han, W. Wu, J. Chen, Mater. Charact. 60, 530–536 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Mater. Sci. Eng. A 485, 664–672 (2008)CrossRefGoogle Scholar
  30. 30.
    X.Y. Liu, Q.L. Pan, Y. Bin He, W. Bin Li, W.J. Liang, Z.M. Yin, Mater. Sci. Eng. A 500, 150–154 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Banerjee, P.S. Robi, A. Srinivasan, L. Praveen Kumar, Mater. Sci. Eng. A 527, 2498–2503 (2010)CrossRefGoogle Scholar
  32. 32.
    G. Ji, F. Li, Q. Li, H. Li, Z. Li, Mater. Sci. Eng. A 527, 2350–2355 (2010)CrossRefGoogle Scholar
  33. 33.
    F. Reyes-Calderón, I. Mejía, J.M. Cabrera, Mater. Sci. Eng. A 562, 46–52 (2013)CrossRefGoogle Scholar
  34. 34.
    M.C. Somani, D.A. Porter, A.S. Hamada, L.P. Karjalainen, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 5329–5342 (2015)CrossRefGoogle Scholar
  35. 35.
    N. Cabañas, N. Akdut, J. Penning, B.C. De Cooman, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 3305–3315 (2006)CrossRefGoogle Scholar
  36. 36.
    L. Llanos, B. Pereda, B. Lopez, J.M. Rodriguez-Ibabe, Mater. Sci. Eng. A 651, 358–369 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, H. Di, X. Wang, Y. Cao, J. Zhang, T. Ma, Mater. Des. 44, 354–364 (2013)CrossRefGoogle Scholar
  38. 38.
    O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, R.E. Logé, Mater. Sci. Eng. A 689, 269–285 (2017)CrossRefGoogle Scholar
  39. 39.
    R. Raj, Metall. Trans. A 12, 1089–1097 (1981)CrossRefGoogle Scholar
  40. 40.
    H. Ziegler, Progress in Solid Mechanics (North-Holland Publishing Company, Amsterdam, 1963)Google Scholar
  41. 41.
    M. Jang, J. Kang, J. Hoon, T. Lee, C. Lee, Mater. Charact. 123, 207–217 (2017)CrossRefGoogle Scholar
  42. 42.
    B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy (Assn of Iron & Steel Engineers, Warrendale, 2011)Google Scholar
  43. 43.
    B.V. Petukhov, Crystallogr. Reports 52, 112–122 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Advanced forming process R&D groupKorea Institute of Industrial TechnologyUlsanRepublic of Korea
  3. 3.Technical Research LaboratoriesPOSCOGwangyangRepublic of Korea

Personalised recommendations