Metals and Materials International

, Volume 25, Issue 3, pp 669–682 | Cite as

Analysis of Compression and Permeability Behavior of Porous Ti6Al4V by Computed Microtomography

  • Luis OlmosEmail author
  • Didier Bouvard
  • Jose Luis Cabezas-Villa
  • Jose Lemus-Ruiz
  • Omar Jiménez
  • Dante Arteaga


Porous materials were developed as a good alternative to replace different bones in the human body as they improve osseointegration, tissue ingrowth and simulate the mechanical properties of human bones. Such characteristics highly depend on the pore features and volume fraction. Samples with a pore volume fraction between 16 and 60% and a pore size distribution of 100–500 µm were analyzed by computed microtomography. 3D images acquisition was performed at 10 µm pixel resolution, which permitted to observe the complete sample. Features like size, shape, orientation, connectivity and pore coordination were determined from the 3D image analysis. Compression behavior was evaluated by interrupted compression testing and, after that, new 3D images were acquired. In order to evaluate permeability, numerical simulations of flow throughout the 3D images were carried out by using Avizo® software. It was found that shape and pore size distribution was similar in all samples, showing good distribution of the pore formers inside the matrix. Full connectivity of pores was obtained with 32% volume fraction and above, and the coordination number follows the Artz model. The pores showed a radial orientation, which induces anisotropy in the flow properties. The compression showed two different behaviors, pore closing and pore coalescence. Values of permeability match with those reported for bones as well as the anisotropy in the radial and vertical directions. It is concluded that the sample with 60 vol% of pores could be consider to be used for bone implants.


Porosity Microtomography Compression Permeability 3D image analysis 



The authors would like to thank to the CIC of the UMSNH and ECOS M15P01 for the financial support and the facilities provided for the development of this study. We would also like to thank the Laboratory “LUMIR” Geosciences of the UNAM, Juriquilla, for the 3D image acquisition and processing.


  1. 1.
    X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Biomaterials (2016). Google Scholar
  2. 2.
    L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, R.B. Wicker, Int. J. Biomater. (2012). Google Scholar
  3. 3.
    Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, Biomaterials (2006). Google Scholar
  4. 4.
    B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, Biomaterials (2006). Google Scholar
  5. 5.
    F.A. España, V.K. Balla, S. Bose, A. Bandyopadhyay, Mater. Sci. Eng. C (2010). Google Scholar
  6. 6.
    A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biomater. (2008). Google Scholar
  7. 7.
    J. Ballarre, I. Manjubala, W.H. Schreiner, J.C. Orellano, P. Fratzl, S. Ceré, Acta Biomater. (2010). Google Scholar
  8. 8.
    S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N.A. Kadri, N.A.A. Osman, Sci. Technol. Adv. Mater. (2015). Google Scholar
  9. 9.
    B. Arifvianto, J. Zhou, Materials (2014). Google Scholar
  10. 10.
    L. Reig, V. Amigó, D.J. Busquets, J.A. Calero, J. Mater. Process. Technol. (2012). Google Scholar
  11. 11.
    Y. Torres, J.A. Rodríguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo, J.J. Pavón, J. Mater. Sci. (2012). Google Scholar
  12. 12.
    J.L. Cabezas-Villa, L. Olmos, D. Bouvard, J. Lemus-Ruiz, O. Jiménez, J. Mater. Res. (2018). Google Scholar
  13. 13.
    J. Jakubowicz, G. Adamek, M. Dewidar, J. Porous Mater. (2013). Google Scholar
  14. 14.
    H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials (2001). Google Scholar
  15. 15.
    J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A.C. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison, A.J.W. Johnson, Biomaterials (2007). Google Scholar
  16. 16.
    H. Montazerian, E. Davoodi, M. Asadi-Eydivand, J. Kadkhodapour, M. Solati-Hashjin, Mater. Des. (2017). Google Scholar
  17. 17.
    V. Karageorgiou, D. Kaplan, Biomaterials (2005). Google Scholar
  18. 18.
    S.M. Kalantari, H. Arabi, S. Mirdamadi, S.A. Mirsalehi, J. Mech. Behav. Biomed. Mater. (2015). Google Scholar
  19. 19.
    Y. Torres, S. Lascano, J. Bris, J. Pavón, J.A. Rodriguez, Mater. Sci. Eng. C. (2014). Google Scholar
  20. 20.
    Z. Zhang, D. Jones, S. Yue, P.D. Lee, J.R. Jones, C.J. Sutcliffe, E. Jones, Mater. Sci. Eng. C (2013). Google Scholar
  21. 21.
    R. Singh, P.D. Lee, T.C. Lindley, R.J. Dashwood, E. Ferrie, T. Imwinkelried, Acta Biomater. (2009). Google Scholar
  22. 22.
    M.C. Varley, S. Neelakantan, T.W. Clyne, J. Dean, R.A. Brooks, A.E. Markaki, Acta Biomater. (2016). Google Scholar
  23. 23.
    M.R. Dias, P.R. Fernandes, J.M. Guedes, S.J. Hollister, J. Biomech. (2012). Google Scholar
  24. 24.
    M.D.M. Innocentini, R.K. Faleiros, R. Pisani Jr., I. Thijs, J. Luyten, S. Mullens, J. Porous Mater. (2010). Google Scholar
  25. 25.
    E.A. Nauman, K.E. Fong, T.M. Keaveny, Ann. Biomed. Eng. (1999). Google Scholar
  26. 26.
    L. Olmos, T. Takahashi, D. Bouvard, C.L. Martin, L. Salvo, D. Bellet, M. Di Michiel, Philos. Mag. (2009). Google Scholar
  27. 27.
    C.L. Lin, J.D. Miller, Powder Technol. (2005). Google Scholar
  28. 28.
    L. Olmos, C.L. Martin, D. Bouvard, D. Bellet, M. Di Michiel, J. Am. Ceram. Soc. (2009). Google Scholar
  29. 29.
    L. Olmos, D. Bouvard, L. Salvo, D. Bellet, M. Di Michiel, J. Mater. Sci. (2014). Google Scholar
  30. 30.
    S.A. Saltykov, Stereometrische Metallographie Metallurgizdat (VEB, Leipzig, 1974)Google Scholar
  31. 31.
    A. Marmottant, L. Salvo, C.L. Martin, A. Mortensen, J. Eur. Ceram. Soc. (2008). Google Scholar
  32. 32.
    A. Vagnon, J.P. Rivière, J.M. Missiaen, D. Bellet, M. Di Michiel, C. Josserond, D. Bouvard, Acta Mater. (2008). Google Scholar
  33. 33.
    X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker, J. Mech. Behav. Biomed. Mater. (2012). Google Scholar
  34. 34.
    D. Bouvard, F.F. Lange, Acta Metall. Mater. (1991). Google Scholar
  35. 35.
    J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, B. Thierry, J. Mater. Sci. Mater. Med. (1999). Google Scholar
  36. 36.
    R.A. Perez, G. Mestres, Mater. Sci. Eng. C (2016). Google Scholar
  37. 37.
    D.J. Griffon, M.R. Sedighi, D.V. Schaeffer, J.A. Eurell, A.L. Johnson, Acta Biomater. (2006). Google Scholar
  38. 38.
  39. 39.
    L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge University Press, Cambridge, 1999), p. 175Google Scholar
  40. 40.
    R. Singh, P.D. Lee, T.C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried, R.J. Dashwood, Acta Biomater. (2010). Google Scholar
  41. 41.
    I. Farias, L. Olmos, O. Jimenez, H.J. Vergara-Hernández, D. Bouvard, P. Gárnica, M. Flores, Mater. Res. Ibero. Am. J. (2017). Google Scholar
  42. 42.
    M.J. Grimm, J.L. Williams, J. Biomech. (1997). Google Scholar
  43. 43.
    F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, P.J. Prendergast, Technol. Health Care 15(1), 3 (2007)Google Scholar
  44. 44.
    C.M. Murphy, M.G. Haugh, F.J. O’Brien, Biomaterials (2010). Google Scholar
  45. 45.
    K. Kieswetter, Z. Schwartz, D.D. Dean, B.D. Boyan, Crit. Rev. Oral Biol. Med. (1996). Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.INICITUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.SIMaPUniv. Grenoble Alpes, CNRSGrenobleFrance
  3. 3.IIMMUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  4. 4.Departamento de Ingeniería de ProyectosUniversidad de GuadalajaraZapopanMexico
  5. 5.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations