Advertisement

Interfacial Microstructural and Corrosion Characterizations of Friction Stir Welded AA6061-T6 and AISI304 Materials

  • Raju Prasad Mahto
  • Sharath Anishetty
  • Arnab Sarkar
  • Omkar Mypati
  • Surjya Kanta Pal
  • Jyotsna Dutta Majumdar
Article
  • 12 Downloads

Abstract

The use of aluminum in conjunction of steel can reduce the weight of structures but dissimilar materials welded structure results in the formation of intermetallic compounds and inhomogeneous distribution of grains. Since aluminum is more active than the steel, the structures made from such dissimilar materials can be affected from corrosion medium which needs to be investigated. In the present work, friction stir welding has been used to join AA6061-T6 and AISI304 in lap configuration, each having a thickness of 1 mm under varied process parameters. The detailed investigations have been made which includes understanding the effect of process variables on microstructures, intermetallic compounds and their phases, and thereby on corrosion of the aluminum-steel welded joint. SEM with integrated EBSD detector and XRD analyses have been carried out to characterize the weld interface that revealed the evolution of grain boundaries and existence of phases such as Fe2Al5 and AlCrFe2. The grain size of the weld zone has been found to be decreasing with increase in weld speed and plunge depth. The temperature profiles have shown a faster rate of heating and cooling with increase in welding speed and plunge depth which led to the refinement of microstructure. The evolution precipitates mainly comprised of Al, Mg and Si as the major elements. The corrosion rate was found to be increasing with decrease in grain size. Samples were corroded by pitting corrosion, inter-granular corrosion, and environmental corrosion. Severity of pits have been found to be non-uniform in the along weld cross-section.

Keywords

Intermetallic compound Corrosion EBSD Dissimilar material joining TEM Friction stir welding 

References

  1. 1.
    K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials. CIRP Ann.: Manuf. Technol. 64, 679–699 (2015)CrossRefGoogle Scholar
  2. 2.
    B.S. Sung, H.S. Bang, S.O. Jeong, W.S. Choi, Y.H. Kwon, H.S. Bang, Effects of processing parameters on the friction stir spot joining of Al5083-O aluminum alloy to DP590 steel. Met. Mater. Int. 23(3), 562–567 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, S. Babu, Influences of process parameters on tensile strength of Friction Stir welded cast A319 aluminium alloy joints. Met. Mater. Int. 15(2), 313–320 (2009)CrossRefGoogle Scholar
  4. 4.
    K.H. Song, Y.D. Chung, K. Nakata, Investigation of microstructure and mechanical properties of friction stir lap jointed Monel 400 and Inconel 600. Met. Mater. Int. 19(3), 571–576 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Almoussawi, A.J. Smith, Thermo—Mechanical effect on poly crystalline boron nitride tool life during friction stir welding (Dwell Period). Met. Mater. Int. 24(3), 560–575 (2018)CrossRefGoogle Scholar
  6. 6.
    L.H. Shah, M. Ishak, Review of research progress on aluminum-steel dissimilar welding. Mater. Manuf. Process. 29(8), 928–933 (2014)CrossRefGoogle Scholar
  7. 7.
    M.-G. Jo et al., Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi. Met. Mater. Int. 24(1), 73–83 (2018)CrossRefGoogle Scholar
  8. 8.
    W.M. Thomas, Patent friction welding Thomas TWI. (1995)Google Scholar
  9. 9.
    M. Dehghani, A. Amadeh, S.A.A. Akbari Mousavi, Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater. Des. 49, 433–441 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Mater. Des. 26(1), 41–46 (2005)CrossRefGoogle Scholar
  11. 11.
    Z. Shen, Y. Chen, M. Haghshenas, A.P. Gerlich, Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds. Eng. Sci. Technol. Int. J. 18, 8–15 (2015)Google Scholar
  12. 12.
    Y.C. Chen, A. Gholinia, P.B. Prangnell, Interface structure and bonding in abrasion circle friction stir spot welding: a novel approach for rapid welding aluminium alloy to steel automotive sheet. Mater. Chem. Phys. 134(1), 459–463 (2012)CrossRefGoogle Scholar
  13. 13.
    C. Chen, R. Kovacevic, Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. Int. J. Mach. Tools Manuf 44(11), 1205–1214 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Carreon-Alvarez et al., Corrosion of aluminum, copper, brass and stainless steel 304 in tequila. Int. J. Electrochem. Sci. 7, 7877–7887 (2012)Google Scholar
  15. 15.
    F. Gharavi, K.A. Matori, R. Yunus, N.K. Othman, F. Fadaeifard, Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process. J. Mater. Res. Technol. 4, 1–9 (2015)CrossRefGoogle Scholar
  16. 16.
    T.D. Clark. An analysis of microstructure and corrosion resistance in underwater friction stir welded 304L stainless steel. Published dissertation, Brigham Young University, Provo, United States (2005)Google Scholar
  17. 17.
    E.T. Akinlabi, A. Andrews, S.A. Akinlabi, Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper. Trans. Nonferrous Met. Soc. China 24(5), 1323–1330 (2014)CrossRefGoogle Scholar
  18. 18.
    S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Corrosion properties in friction stir welded 304 austenitic stainless Steel. Weld. World 49, 63–68 (2005)CrossRefGoogle Scholar
  19. 19.
    K. Surekha, B.S. Murty, K. Prasad Rao, Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy. Solid State Sci. 11(4), 907–917 (2009)CrossRefGoogle Scholar
  20. 20.
    K. Surekha, B.S. Murty, K.P. Rao, Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surf. Coatings Technol. 202(17), 4057–4068 (2008)CrossRefGoogle Scholar
  21. 21.
    W. Xu, J. Liu, Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate. Corros. Sci. 51(11), 2743–2751 (2009)CrossRefGoogle Scholar
  22. 22.
    B. Seo, K. Hyun, S. Kwangsuk, Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel. Met. Mater. Int. no, 0123456789 (2018)Google Scholar
  23. 23.
    Z.L. Hu, X.S. Wang, S.J. Yuan, Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy. Mater. Charact. 73, 114–123 (2012)CrossRefGoogle Scholar
  24. 24.
    S.H. Kang, H.N. Han, K.H. Oh, J.H. Cho, C.G. Lee, S.J. Kim, Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy. Met. Mater. Int. 15(6), 1027–1031 (2009)CrossRefGoogle Scholar
  25. 25.
    Z. Zhang, B.L. Xiao, Z.Y. Ma, Enhancing mechanical properties of friction stir welded 2219Al-T6 joints at high welding speed through water cooling and post-welding artificial ageing. Mater. Charact. 106, 255–265 (2015)CrossRefGoogle Scholar
  26. 26.
    Y.B. Tan et al., A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding. Mater. Charact. 127, 41–52 (2017)CrossRefGoogle Scholar
  27. 27.
    N.-K. Kim, B.-C. Kim, Y.-G. An, B.-H. Jung, S.-W. Song, C.-Y. Kang, The effect of material arrangement on mechanical properties in Friction Stir Welded dissimilar A5052/A5J32 aluminum alloys. Met. Mater. Int. 15(4), 671–675 (2009)CrossRefGoogle Scholar
  28. 28.
    Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy. Mater. Sci. Eng., A 415(1–2), 250–254 (2006)CrossRefGoogle Scholar
  29. 29.
    Y. Templeman, G. Ben Hamu, L. Meshi, Friction stir welded AM50 and AZ31 Mg alloys: microstructural evolution and improved corrosion resistance. Mater. Charact. 126, 86–95 (2017)CrossRefGoogle Scholar
  30. 30.
    K.D. Ralston, D. Fabijanic, N. Birbilis, Effect of grain size on corrosion of high purity aluminium. Electrochim. Acta 56(4), 1729–1736 (2011)CrossRefGoogle Scholar
  31. 31.
    G.R. Argade, S.K. Panigrahi, R.S. Mishra, Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros. Sci. 58, 145–151 (2012)CrossRefGoogle Scholar
  32. 32.
    Y. Lin, Z. Zheng, Microstructural evolution of 2099 Al[sbnd]Li alloy during friction stir welding process. Mater. Charact. 123, 307–314 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Polat, M. Avsar, F. Ozturk, Effects of the artificial-aging temperature and time on the mechanical properties and springback behavior of AA6061. Mater. Tehnol. 49(4), 487–493 (2015)CrossRefGoogle Scholar
  34. 34.
    W. Tao, Z. Yong, K. Matsuda, Precipitation in the nugget zone of AA6061-T6 by friction stir welding. Chiang Mai J. Sci. 43(2), 409–419 (2016)Google Scholar
  35. 35.
    G. Georges, Localized corrosion of 1913 T240 aluminium alloy in chloride media. Corros. Sci. 41, 310–327 (1913)Google Scholar
  36. 36.
    K. Kimapong, T. Watanabe, Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding. Mater. Trans. 46(4), 835–841 (2005)CrossRefGoogle Scholar
  37. 37.
    R.P. Mahto, R. Bhoje, S.K. Pal, H.S. Joshi, S. Das, A study on mechanical properties in friction stir lap welding of AA 6061-T6 and AISI 304. Mater. Sci. Eng., A 652, 136–144 (2016)CrossRefGoogle Scholar
  38. 38.
    R.P. Mahto, R. Kumar, S.K. Pal, S.K. Panda, A comprehensive study on force, temperature, mechanical properties and micro-structural characterizations in friction stir lap welding of dissimilar materials (AA6061-T6 & AISI304). J. Manuf. Process. 31, 624–639 (2018)CrossRefGoogle Scholar
  39. 39.
    X. Liu, S. Lan, J. Ni, Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J. Mater. Process. Technol. 219, 112–123 (2015)CrossRefGoogle Scholar
  40. 40.
    X. Wang, J.V. Wood, Y. Sui, H. Lu, Formation of intermetallic compound in iron-aluminum alloys. J. Shanghai Univ. (English Ed. 2(4), 305–310 (1998)CrossRefGoogle Scholar
  41. 41.
    A. Bouayad, C. Gerometta, A. Belkebir, A. Ambari, Kinetic interactions between solid iron and molten aluminium. Mater. Sci. Eng., A 363(1–2), 53–61 (2003)CrossRefGoogle Scholar
  42. 42.
    S. Kobayashi, T. Yakou, Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater. Sci. Eng., A 338, 44–53 (2002)CrossRefGoogle Scholar
  43. 43.
    K. Bouché, F. Barbier, A. Coulet, Intermetallic compound layer growth between solid iron and molten aluminium. Mater. Sci. Eng., A 249(1–2), 167–175 (1998)CrossRefGoogle Scholar
  44. 44.
    A. Yazdipour, A. Heidarzadeh, Dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel alloys. Int. J. Adv. Manuf. Technol. 87(9–12), 3105–3112 (2016)CrossRefGoogle Scholar
  45. 45.
    R.A. Rodríguez-Díaz et al., Corrosion behavior of Fe-Al alloy modified with Cr and Ti in simulated physiological human media. Int. J. Electrochem. Sci. 8(1), 958–972 (2013)Google Scholar
  46. 46.
    Y.-S. Kim, Y.-H. Kim, Sliding wear behavior of Fe3Al-based alloys. Mater. Sci. Eng., A 258(1–2), 319–324 (1998)CrossRefGoogle Scholar
  47. 47.
    Z. Szklarska-Smialowska, Pitting corrosion of aluminum. Corros. Sci. 41(9), 1743–1767 (1999)CrossRefGoogle Scholar
  48. 48.
    U. Donatus, G.E. Thompson, X. Zhou, J. Wang, A. Cassell, K. Beamish, Corrosion susceptibility of dissimilar friction stir welds of AA5083 and AA6082 alloys. Mater. Charact. 107, 85–97 (2015)CrossRefGoogle Scholar
  49. 49.
    C. Liu, D.L. Chen, S. Bhole, X. Cao, M. Jahazi, Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Mater. Charact. 60(5), 370–376 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Raju Prasad Mahto
    • 1
  • Sharath Anishetty
    • 2
  • Arnab Sarkar
    • 2
  • Omkar Mypati
    • 1
  • Surjya Kanta Pal
    • 1
  • Jyotsna Dutta Majumdar
    • 2
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations