Advertisement

Metals and Materials International

, Volume 25, Issue 3, pp 794–804 | Cite as

Preparation and Characterization of Iron Matrix Syntactic Foams with Glass Microspheres via Powder Metallurgy

  • Yi Je Cho
  • Taek Sun Lee
  • Wookjin Lee
  • Young Cheol Lee
  • Yong Ho ParkEmail author
Article
  • 71 Downloads

Abstract

Iron matrix syntactic foams with four different glass microsphere fractions were prepared via powder metallurgy. Effects of compaction pressure and lubricant addition on the microstructure and the mechanical properties were investigated. It was observed that matrix densification and fracture, softening, shrinkage, and bonding of the microspheres tended to increase with the compaction pressures. The compaction pressure incurring microsphere fractures was in inverse ratio to the microsphere fraction. The fracture and softened microspheres degraded onset of plateau stress values proportionally to the microsphere fractions at low compaction pressure, while enhanced and stabilized them at about 240 MPa at higher pressures regardless of the microsphere fraction, owing to increased load bearing capacity by a formation of solid particle-like microspheres. The lubricant formed pores in the matrix or accelerated densification and microsphere fractures depending on the microsphere fractions, while it had no significant effect on mechanical characteristics except brittleness.

Keywords

Iron matrix syntactic foam Glass microsphere Powder metallurgy Microstructure Mechanical property 

Notes

Acknowledgements

This study was conducted as part of the Basic Science Research Program through the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF) (NRF-2016R1D1A3B03933650).

References

  1. 1.
    N. Gupta, P.K. Rohatgi, Metal Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications (DEStech Publications Inc., Pennsylvenia, 2014)Google Scholar
  2. 2.
    J. Weise, D. Lehmhus, J. Baumeister, R. Kun, M. Bayoumi, M. Busse, Steel Res. Int. 85, 486–497 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Luong, D. Lehmhus, N. Gupta, J. Weise, M. Bayoumi, Materials 9, 115–130 (2016)CrossRefGoogle Scholar
  4. 4.
    G. Castro, S.R. Nutt, Mater. Sci. Eng., A 535, 274–280 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Castro, S.R. Nutt, Mater. Sci. Eng., A 553, 89–95 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Weise, J. Baumeister, O. Yezerska, N. Salk, G.B.D. Silva, Adv. Eng. Mater. 12, 604–608 (2010)CrossRefGoogle Scholar
  7. 7.
    J. Weise, N. Salk, U. Jehring, J. Baumeister, D. Lehmhus, M.A. Bayoumi, Adv. Eng. Mater. 15, 118–122 (2013)CrossRefGoogle Scholar
  8. 8.
    D. Lehmhus, M. Vesenjak, D.S. Schampheleire, T. Fiedler, Materials 10, 922–953 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Schlieper, G. Dowson, B. Williams, F. Petzoldt, Introduction to Metal Injection Moulding Technology (European Powder Metallurgy Association, UK, 2017)Google Scholar
  10. 10.
    X. Xue, Y. Zhao, JOM 63, 43–47 (2011)CrossRefGoogle Scholar
  11. 11.
    D.P. Mondal, J. Datta Majumder, N. Jha, A. Badkul, S. Das, A. Patel, G. Gupta, Mater. Des. 34, 82–89 (2012)CrossRefGoogle Scholar
  12. 12.
    N. Jha, D.P. Mondal, M.D. Goel, J.D. Majumdar, S. Das, O.P. Modi, Trans. Nonferrous Met. Soc. China 24, 89–99 (2014)CrossRefGoogle Scholar
  13. 13.
    R.Q. Guo, P.K. Rohatgi, D. Nath, J. Mater. Sci. 31, 5513–5519 (1996)CrossRefGoogle Scholar
  14. 14.
    R.Q. Guo, P.K. Rohatgi, D. Nath, J. Mater. Sci. 32, 3971–3974 (1997)CrossRefGoogle Scholar
  15. 15.
    M. Hrairi, M. Ahmed, Y. Nimir, Adv. Powder Technol. 20, 548–553 (2009)CrossRefGoogle Scholar
  16. 16.
    C.A. Vogiatzis, A. Tsouknidas, D.T. Kountouras, S. Skolianos, Mater. Des. 85, 444–454 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Zhao, X. Tao and X. Xue, Materials Science and Technology (MS&T) 2008, October 59. Pittsburgh, Pennsylvania, USA, pp. 2607–2615 (2008)Google Scholar
  18. 18.
    C.A. Vogiatzis, S.M. Skolianos, Compos. Part A-Appl. S. 82, 8–19 (2016)CrossRefGoogle Scholar
  19. 19.
    iM30 K Hi-Strength Glass Bubbles, 3 M™Google Scholar
  20. 20.
    K.B. Carlisle, M. Lewis, K.K. Chawla, M. Koopman, G.M. Gladysz, Acta Mater. 55, 2301–2318 (2007)CrossRefGoogle Scholar
  21. 21.
    Y.J. Cho, W. Lee, H.Y. Park, Materials 10, 1201–1215 (2017)CrossRefGoogle Scholar
  22. 22.
    J. Zheng, W.B. Carlson, J.S. Reed, J. Eur. Ceram. Soc. 15, 479–483 (1995)CrossRefGoogle Scholar
  23. 23.
    A. Simchi, Mater. Des. 24, 585–594 (2003)CrossRefGoogle Scholar
  24. 24.
    L. Peroni, M. Scapin, M. Avalle, J. Weise, D. Lehmhus, J. Baumeister, M. Busse, Adv. Eng. Mater. 14, 909–918 (2012)CrossRefGoogle Scholar
  25. 25.
    Y.J. Cho, Y. Kang, C.Y. Lee, Y. Park, W. Lee, Materials 10, 911–925 (2017)CrossRefGoogle Scholar
  26. 26.
    D.D. Luong, V.C. Shunmugasamy, N. Gupta, D. Lehmhus, J. Weise, J. Baumeister, Mater. Des. 66, 516–531 (2015)CrossRefGoogle Scholar
  27. 27.
    D.D. Luong, O.M. Strbik Iii, V.H. Hammond, N. Gupta, K. Cho, J. Alloys Compd. 550, 412–422 (2013)CrossRefGoogle Scholar
  28. 28.
    A.C.F. Cocks, Prog. Mater Sci. 46, 201–229 (2001)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringPusan National UniversityBusanRepublic of Korea
  2. 2.Dongnam Regional DivisionKorea Institute of Industrial Technology (KITECH)BusanRepublic of Korea

Personalised recommendations