Advertisement

Multi-Doping Effect on Ductility of TiAl3: A DFT Study

  • Boon Teoh Tan
  • Jia Zhang
  • Kostiantyn V. Sopiha
  • Ping Wu
Article

Abstract

In this study, mechanical behaviors of D022–TiAl3 intermetallic compound co-doped by W–M (M = C, Ge, Pb, Si and Sn) were simulated using density functional theory. The calculated bulk modulus, shear modulus, Young’s modulus and Pugh’s ratio all confirm that the introduction of W–M co-dopants effectively increases ductility in D022–TiAl3. By detailed thermodynamic and electronic structure analysis, we revealed that W–M co-doped TiAl3 systems are mechanically and thermodynamically stable. Among all systems, the most ductile is realized by W–C co-doping. In addition, the further electronic structure calculations indicated that such high ductility might originate from the dopant-induced d-band shift and the resulting electron redistribution. We systematically investigated the doped TiAl3 systems from both mechanical and electronic points of view. This study may shed some lights on designing novel TiAl-based materials with enhanced ductility.

Keywords

Multi-doped TiAl3 Ductility Elastic properties First-principles calculations Electronic structure 

Notes

Acknowledgements

This work was supported by the A*STAR Computational Resource Centre through the use of its high-performance computing facilities.

Supplementary material

12540_2018_213_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 39 kb)

References

  1. 1.
    X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19(9), 1275–1281 (2011)CrossRefGoogle Scholar
  2. 2.
    C.H. Li, P. Wu, Correlation of bulk modulus and the constituent element properties of binary intermetallic compounds. Chem. Mater. 13(12), 4642–4648 (2001)CrossRefGoogle Scholar
  3. 3.
    C.H. Li, Y.L. Chin, P. Wu, Correlation between bulk modulus of ternary intermetallic compounds and atomic properties of their constituent elements. Intermetallics 12(1), 103–109 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Wu, T. Wu, Temperature-dependent modulus of resilience in metallic solids: calculated from strain-electron-phonon interactions. J. Alloy. Compd. 705, 269–272 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Koyama, E. Akiyama, Y.-K. Lee, D. Raabe, K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels. Int. J. Hydrog Energy 42(17), 12706–12723 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Adachi, W. Itaka, T. Aida, K. Osamura, M. Imaoka, J. Kusui, Microstructure and mechanical properties of ternary intermetallic compound dispersed P/M Al–Mn–X–Zr (x = Cu, Ni) alloys. Trans. Indian Inst. Metals 62(2), 163–167 (2009)CrossRefGoogle Scholar
  7. 7.
    Y.H. Duan, B. Huang, Y. Sun, M.J. Peng, S.G. Zhou, Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: a first-principles investigation. J. Alloy. Compd. 590, 50–60 (2014)CrossRefGoogle Scholar
  8. 8.
    L. R-y, D. Y-h, Electronic structures and thermodynamic properties of HfAl3 in L12, D022 and D023 structures. Trans. Nonferrous Metals Soc. China 26(9), 2404–2412 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 15(4), 191–215 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Brinson, Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J. Mech. Phys. Solids 52(7), 1549–1571 (2004)CrossRefGoogle Scholar
  11. 11.
    S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-on, Y. Suzuki, A. Masuda, An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Mater. Struct. 11(2), 218 (2002)CrossRefGoogle Scholar
  12. 12.
    O. Vdovychenko, O. Ivanova, Y. Podrezov, M. Bulanova, I. Fartushna, Mechanical behavior of homogeneous and nearly homogeneous Ti 3 Sn: role of composition and microstructure. Mater. Des. 125, 26–34 (2017)CrossRefGoogle Scholar
  13. 13.
    S.H. Kim, H. Kim, N.J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518(7537), 77–79 (2015)CrossRefGoogle Scholar
  14. 14.
    O. Engler, C.D. Marioara, T. Hentschel, H.-J. Brinkman, Influence of copper additions on materials properties and corrosion behaviour of Al–Mg alloy sheet. J. Alloy. Compd. 710, 650–662 (2017)CrossRefGoogle Scholar
  15. 15.
    R.L. Fleischer, Effects of composition on the mechanical properties of tough, high-temperature intermetallic compounds. ISIJ Int. 31(10), 1186–1191 (1991)CrossRefGoogle Scholar
  16. 16.
    R. Sujata, S. Bhargava, S. Sangal, Microstructural features of TiAl3 base compounds formed by reaction synthesis. ISIJ Int. 36(3), 255–262 (1996)CrossRefGoogle Scholar
  17. 17.
    D.J. Skinner, M. Zedalis, Elastic modulus versus melting temperature in aluminum based intermetallics. Scr. Metall. 22(11), 1783–1785 (1988)CrossRefGoogle Scholar
  18. 18.
    C.L. Fu, Electronic, elastic, and fracture properties of trialuminide alloys: Al3Sc and Al3Ti. J. Mater. Res. 5(05), 971–979 (1990)CrossRefGoogle Scholar
  19. 19.
    J.C. Pang, X.P. Cui, A.B. Li, G.H. Fan, L. Geng, Z.Z. Zheng, Q.W. Wang, Effect of solid solution of Si on mechanical properties of TiAl3 based on the multi-laminated Ti-(SiCp/Al) composite system. Mater. Sci. Eng. A Struct. 579, 57–63 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, Z.X. Guo, F. Pan, Z. Li, X. Luo, Effect of composition on the microstructure and mechanical properties of Mg–Zn–Al alloys. Mater. Sci. Eng., A 456(1–2), 43–51 (2007)CrossRefGoogle Scholar
  21. 21.
    T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, X. J-h, Crystal structure, phase stability, and electronic structure of Ti-Al intermetallics: TiAl. Phys. Rev. B 41(18), 12462–12467 (1990)CrossRefGoogle Scholar
  22. 22.
    R.M. Said, M.A.A.M. Salleh, M.I.I. Ramli, N. Saud, M.M.A.B. Abdullah, A.V. Sandu, Microstructure and mechanical properties of lead-free Sn–Cu–Ni composite solder paste reinforced with silicon (Si) particles. AIP Conf. Proc. 1835(1), 020029 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Yu, L.L. He, H.Q. Ye, Effect of W on structural stability of TiAl intermetallics and the site preference of W. Phys. Rev. B 65(18), 184102 (2002)CrossRefGoogle Scholar
  24. 24.
    Y. Pan, Y. Lin, H. Wang, C. Zhang, Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater. Des. 86, 259–265 (2015)CrossRefGoogle Scholar
  25. 25.
    G. Zhu, Y. Dai, D. Shu, Y. Xiao, Y. Yang, J. Wang, B. Sun, R. Boom, Diffusion mechanisms of vacancy and doped Si in Al3Ti from first-principles calculations. Intermetallics 19(7), 1036–1040 (2011)CrossRefGoogle Scholar
  26. 26.
    D. Jang, J.R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9(3), 215–219 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Niu, X.Q. Chen, P. Liu, W. Xing, X. Cheng, D. Li, Y. Li, Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion. Sci Rep 2, 718 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Hu, X. Wu, R. Wang, Z. Jia, W. Li, Q. Liu, Structural stability, mechanical properties and stacking fault energies of TiAl3 alloyed with Zn, Cu, Ag: First-principles study. J. Alloy. Compd. 666, 185–196 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Beddoes, W. Wallace, L. Zhao, Current understanding of creep behaviour of near γ-titanium aluminides. Int. Mater. Rev. 40(5), 197–217 (1995)CrossRefGoogle Scholar
  30. 30.
    J. Triantafillou, J. Beddoes, L. Zhao, W. Wallace, Creep properties of near γ-TiAl + W with a lamellar microstructure. Scr. Metall. Mater. 31(10), 1387–1392 (1994)CrossRefGoogle Scholar
  31. 31.
    M. Zhu, P. Wu, Q. Li, B. Xu, Vacancy-induced brittle to ductile transition of W–M co-doped Al3Ti (M = Si, Ge, Sn and Pb). Sci Rep 7(1), 13964 (2017)CrossRefGoogle Scholar
  32. 32.
    Z. Chen, H. Zou, F. Yu, J. Zou, Chemical bonding and pseudogap formation in D022- and L12-structure (V, Ti)Al3. J. Phys. Chem. Solids 71(7), 946–951 (2010)CrossRefGoogle Scholar
  33. 33.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)CrossRefGoogle Scholar
  34. 34.
    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)CrossRefGoogle Scholar
  35. 35.
    G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)CrossRefGoogle Scholar
  36. 36.
    G. Ghosh, S. Vaynman, M. Asta, M.E. Fine, Stability and elastic properties of L12-(Al, Cu)3(Ti, Zr) phases: Ab initio calculations and experiments. Intermetallics 15(1), 44–54 (2007)CrossRefGoogle Scholar
  37. 37.
    J. Li, M. Zhang, X. Luo, Theoretical investigations on phase stability, elastic constants and electronic structures of D022- and L12-Al3Ti under high pressure. J. Alloy. Compd. 556, 214–220 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Wu, P. Wu, Variation of band gap and vacancy formation energy of lithium nitride with 3d transition metal substitution. J. Mater. Sci. 52(16), 9780–9786 (2017)CrossRefGoogle Scholar
  39. 39.
    S.S. Nayak, S.K. Pabi, B.S. Murty, High strength nanocrystalline L12-Al3(Ti, Zr) intermetallic synthesized by mechanical alloying. Intermetallics 15(1), 26–33 (2007)CrossRefGoogle Scholar
  40. 40.
    S.V. Meschel, O.J. Kleppa, The standard enthalpies of formation of some 3d transition metal aluminides by high-temperature direct synthesis calorimetry, in Metallic alloys: experimental and theoretical perspectives, ed. by J.S. Faulkner, R.G. Jordan (Springer, Dordrecht, 1994), pp. 103–112CrossRefGoogle Scholar
  41. 41.
    S. Delsante, G. Ghosh, G. Borzone, A calorimetric study of alloys along the Ti(Zn, Al)3 section. Calphad 33(1), 50–54 (2009)CrossRefGoogle Scholar
  42. 42.
    M. Nassik, F.Z. Chrifi-Alaoui, K. Mahdouk, J.C. Gachon, Calorimetric study of the aluminium–titanium system. J. Alloy. Compd. 350(1–2), 151–154 (2003)CrossRefGoogle Scholar
  43. 43.
    P.-Y. Tang, B.-Y. Tang, Influence of antiphase boundary period parameter M′ on elastic and electronic properties of one dimensional long period structures of Al3Ti. Solid State Commun. 152(21), 1939–1944 (2012)CrossRefGoogle Scholar
  44. 44.
    M. Nakamura, K. Kimura, Elastic constants of TiAl3 and ZrAl3 single crystals. J. Mater. Sci. 26(8), 2208–2214 (1991)CrossRefGoogle Scholar
  45. 45.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)Google Scholar
  46. 46.
    J. Yang, J. Huang, Z. Ye, D. Fan, S. Chen, Y. Zhao, First-principles calculations on structural energetics of Cu–Ti binary system intermetallic compounds in Ag–Cu–Ti and Cu–Ni–Ti active filler metals. Ceram. Int. 43(10), 7751–7761 (2017)CrossRefGoogle Scholar
  47. 47.
    S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 823–843 (1954)CrossRefGoogle Scholar
  48. 48.
    X. Wang, Y.-T. Zhang, P.-C. Liu, J. Yan, W. Mo, P.-C. Zhang, X.-Q. Chen, Ductile-to-brittle transition and materials’ resistance to amorphization by irradiation damage. RSC Adv. 6(50), 44561–44568 (2016)CrossRefGoogle Scholar
  49. 49.
    F. Chu, T.E. Mitchell, B. Majumdar, D. Miracle, T.K. Nandy, D. Banerjee, Elastic properties of the O phase in Ti–Al–Nb alloys. Intermetallics 5(2), 147–156 (1997)CrossRefGoogle Scholar
  50. 50.
    V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Elastic properties of antiperovskite-type Ni-rich nitrides MNNi3 (M = Zn, Cd, Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag and Pt) as predicted from first-principles calculations. Phys. B 405(22), 4615–4619 (2010)CrossRefGoogle Scholar
  51. 51.
    V.V. Bannikov, I.R. Shein, D.V. Suetin, Structural, elastic and electronic properties of Ir-based carbides-antiperovskites Ir 3 M C (M = Ti, Zr, Nb and Ta) as predicted from first-principles calculations. Comput. Condens. Matter 11, 60–68 (2017)CrossRefGoogle Scholar
  52. 52.
    I. Baker, P.R. Munroe, Improving intermetallic ductility and toughness. JOM 40(2), 28–31 (1988)CrossRefGoogle Scholar
  53. 53.
    N.S. Stoloff, Toughening mechanisms in intermetallics. Metall. Trans. A 24(3), 561–567 (1993)CrossRefGoogle Scholar
  54. 54.
    D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8(4), 345–349 (1992)CrossRefGoogle Scholar
  55. 55.
    D.-H. Wu, H.-C. Wang, L.-T. Wei, R.-K. Pan, B.-Y. Tang, First-principles study of structural stability and elastic properties of MgPd3 and its hydride. J. Magnes. Alloys 2(2), 165–174 (2014)CrossRefGoogle Scholar
  56. 56.
    M.E. Fine, L.D. Brown, H.L. Marcus, Elastic-constants versus melting temperature in metals. Scr. Metall. 18(9), 951–956 (1984)CrossRefGoogle Scholar
  57. 57.
    M. Alouani, R.C. Albers, M. Methfessel, Calculated elastic constants and structural properties of Mo and MoSi2. Phys. Rev. B 43(8), 6500–6509 (1991)CrossRefGoogle Scholar
  58. 58.
    P. Fuentealba, E. Chamorro, J.C. Santos, Chapter 5 understanding and using the electron localization function, in Theoretical and Computational Chemistry, vol 19, ed. by A. Toro-Labbé (Elsevier, London, 2007), pp. 57–85Google Scholar
  59. 59.
    B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts, in Advances in Catalysis, vol 45. ed. by B. C. Gates, H. Knozinger (Academic Press, Cambridge, 2000)Google Scholar
  60. 60.
    L. Yi, C. Kuiying, Z. Jinghua, H. Zhuangqi, L. Gang, K. Nicholas, Electronic effects of oxygen and vanadium impurities in TiAl. J. Phys.: Condens. Matter 9(45), 9829 (1997)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Boon Teoh Tan
    • 1
  • Jia Zhang
    • 2
  • Kostiantyn V. Sopiha
    • 1
  • Ping Wu
    • 1
  1. 1.Entropic Interface Group, Engineering Product DevelopmentSingapore University of Technology and DesignSingaporeSingapore
  2. 2.Institute of High Performance ComputingAgency for Science, Technology and ResearchSingaporeSingapore

Personalised recommendations