Advertisement

Microstructure Evolution of High-Alloyed Al–Zn–Mg–Cu–Zr Alloy Containing Trace Amount of Sc During Homogenization

  • Yu Wang
  • Zhihui Li
  • Baiqing Xiong
  • Kai Wen
  • Shuhui Huang
  • Xiwu Li
  • Yongan Zhang
Article
  • 17 Downloads

Abstract

Microstructure evolution of a new high-alloyed Al–Zn–Mg–Cu–Zr–Sc aluminium alloy during two-stage homogenization process was investigated by use of scanning electron microscope, transition electron microscope and high resolution transition electron microscope. The results indicate that the morphology and chemical composition of Al3(Sc, Zr) particles formed in the first stage were greatly affected by heating temperature. With the increase of heating temperature, the morphology of Al3(Sc, Zr) particles transform from cuboidal with evident faceting to spheroidal due to improved Zr diffusivity. More Zr atoms enrich in the interface of precipitate/matrix forming a thin layer. Moreover, the mean diameter of precipitates increases a little bit with the increase of heating temperature, showing very restricted coarsening rate and high thermal stability of Al3(Sc, Zr) particles. After an appropriate second stage heat treatment (474 °C × 48 h), the intermetallic formed in the solidification process could dissolve sufficiently and Al3(Sc, Zr) particles still keep very good coherency with Al matrix without abnormal growth.

Keywords

Al–Zn–Mg–Cu Alloy Microstructure Homogenization Al3(Sc, Zr) particles Scandium 

Notes

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2016YFB0300903), and National Key Basic Research Program of China (973 Program, No.2012CB723900).

References

  1. 1.
    E.M. Savitsky, V.F. Terehova, I.V. Burov, in Proceedings of the Fourth Conference on Rare Earth Research, ed. by L. Eyring (Phoenix, Arizona, 1965), p. 409Google Scholar
  2. 2.
    V.I. Elagin, V.V. Zakharov, T.D. Rostova, Metals Sci. Heat Treat. 34, 37 (1992)CrossRefGoogle Scholar
  3. 3.
    K.A. Gschneidner, F.W. Calderwood, Bull. Alloy Phase Diagr. 10, 34 (1989)CrossRefGoogle Scholar
  4. 4.
    A.F. Norman, P.B. Prangnell, R.S. McEwen, Acta Mater. 46, 5715 (1998)CrossRefGoogle Scholar
  5. 5.
    V.G. Davydov, V.I. Elagin, V.V. Zakharov, T.D. Rostova, Metal Sci. Heat Treat. 38, 347 (1996)CrossRefGoogle Scholar
  6. 6.
    M. Schöbel, P. Pongratz, H.P. Degischer, Acta Mater. 60, 4247 (2012)CrossRefGoogle Scholar
  7. 7.
    J.H. Li, B. Oberdorfer, S. Wurster, P. Schumacher, J. Mater. Sci. 49, 5961 (2014)CrossRefGoogle Scholar
  8. 8.
    L.M. Wu, W.H. Wang, Y.F. Hsu, S. Trong, J. Alloys Compd. 456, 163 (2008)CrossRefGoogle Scholar
  9. 9.
    S.I. Fujikawa, Defect Diffus. Forum. 143–147, 115 (1997)CrossRefGoogle Scholar
  10. 10.
    W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, K. Marthinsen, J. Alloys Compd. 470, 107 (2009)CrossRefGoogle Scholar
  11. 11.
    C. Fuller, J. Murray, D. Seidman, Acta Mater. 53, 5401 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Fuller, D. Seidman, Acta Mater. 53, 5415 (2005)CrossRefGoogle Scholar
  13. 13.
    Z.B. He, Z.M. Yin, S. Lin, Y. Deng, B.C. Shang, X. Zhou, J. Rare Earths 28, 641 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Huang, Q.L. Pan, B. Li, Z.M. Liu, Z.Q. Huang, Z.M. Yin, J. Alloys Compd. 629, 197 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Nie, Z.M. Yin, D.P. Zhu, Y.Y. Peng, F. Jiang, J.W. Huang, J. Cent, South Univ. 14, 452 (2007)CrossRefGoogle Scholar
  16. 16.
    Y.W. Riddle, T.H. Sanders, Metall. Mater. Trans. A 35, 341 (2004)CrossRefGoogle Scholar
  17. 17.
    A. Tolley, V. Radmilovic, U. Dahmen, Scr. Mater. 52, 621 (2005)CrossRefGoogle Scholar
  18. 18.
    T. Warner, Mater. Sci. Forum 519–521, 1271 (2006)CrossRefGoogle Scholar
  19. 19.
    K. Hirano, S. Fujikawa, J. Nucl. Mater. 69–70, 564 (1978)CrossRefGoogle Scholar
  20. 20.
    O.N. Senkov, M.R. Shagiev, S.V. Senkova, D.B. Miracle, Acta Mater. 56, 3723 (2008)CrossRefGoogle Scholar
  21. 21.
    R. Wagner, R. Kampmann, P. Voorhees, in Phase Transformation in Materials, ed. by G. Kostorz (Wiley, New York, 2001), p. 309Google Scholar
  22. 22.
    A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1996), pp. 45–56Google Scholar
  23. 23.
    E.A. Marquis, D.N. Seidman, Acta Mater. 49, 1909 (2001)CrossRefGoogle Scholar
  24. 24.
    B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, K. Marthinsen, Scr. Mater. 51, 333 (2004)CrossRefGoogle Scholar
  25. 25.
    Y. Harada, D.C. Dunand, Mater. Sci. Eng. A 329–331, 686 (2002)CrossRefGoogle Scholar
  26. 26.
    Y. Harada, D.C. Dunand, Scr. Mater. 48, 219 (2003)CrossRefGoogle Scholar
  27. 27.
    I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)CrossRefGoogle Scholar
  28. 28.
    A.D. Brailsford, P. Wynblatt, Acta Metall. 27, 489 (1979)CrossRefGoogle Scholar
  29. 29.
    A.M. Ges, O. Fornaro, H.A. Palacio, Mater. Sci. Eng. A 458, 96 (2007)CrossRefGoogle Scholar
  30. 30.
    C.S. Tsao, C.Y. Chen, T.Y. Kuo, T.L. Lin, M.S. Yu, Mater. Sci. Eng. A 363, 228 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Yu Wang
    • 1
  • Zhihui Li
    • 1
  • Baiqing Xiong
    • 1
  • Kai Wen
    • 1
  • Shuhui Huang
    • 1
  • Xiwu Li
    • 1
  • Yongan Zhang
    • 1
  1. 1.State Key Laboratory of Non-ferrous Metals and ProcessesGeneral Research Institute for Nonferrous MetalsBeijingPeople’s Republic of China

Personalised recommendations