Metals and Materials International

, Volume 25, Issue 3, pp 570–583 | Cite as

High-Temperature Deformation Behavior of Duplex Mg–8.41Li–1.80Al–1.77Zn Alloy Processed by Friction Stir Processing

  • Fu Rong CaoEmail author
  • Guo Qiang Xue
  • Bi Jin Zhou
  • Shun Cheng Wang


To explore the ductility, a novel Mg–8.41Li–1.80Al–1.77Zn (designated as LAZ822) alloy was fabricated by casting, hot rolling and friction stir processing. The maximum elongation to failure of 489.5% was demonstrated in a fine-grained LAZ822 alloy at a temperature of 573 K and an initial strain rate of 1.67 × 10−4 s−1. The true stress exponent of 2, the grain size exponent of 2 and the activation energy of 89.44–121.14 kJ/mol confirm that grain boundary sliding controlled by lattice diffusion governs the rate-controlling deformation process at the temperatures of 523 and 573 K. The viscous resistance models of dual phases were newly established. At 573 K, the lattice viscous resistance of the α-Mg phase is 2644 times as large as that of the β-Li phase, whereas the grain boundary viscous resistance of the α-Mg phase is 3.3 times as large as that of the β-Li phase. Some α-Mg grains remain in an equiaxed state while the other α-Mg grains become connected at elevated temperatures. This experimental evidence corroborates the existence of dynamic grain connection growth. Cavity growth mechanism maps were constructed. The maps reveal that power-law cavity growth or strain controlled cavity growth is the predominant cavity growth mechanism.


Superplasticity Mg–Li alloy Friction stir processing Mechanical property Microstructure 



This work was supported by the key project of National Natural Science Foundation of China [Project No. 51334006]. The author (Furong Cao) also appreciates the help from Si Yuan Liu and Rui Kang Su during the preparation of this manuscript.


  1. 1.
    S.H. Jeong, Y.J. Kim, K.H. Kong, T.H. Cho, Y.K. Kim, H.K. Lim, W.T. Kim, D.H. Kim, Met. Mater. Int. 24, 391 (2018)CrossRefGoogle Scholar
  2. 2.
    H.J. Wu, T.Z. Wang, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, M.L. Zhang, J. Mater. Process. Technol. 254, 265 (2018)CrossRefGoogle Scholar
  3. 3.
    Y. Yang, X.M. Xiong, J.F. Su, X.D. Peng, H.M. Wen, G.B. Wei, F.S. Pan, E.J. Lavernia, J. Alloys Compd. 750, 696 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Feng, W.C. Liu, J. Zhao, G.H. Wu, H.H. Zhang, W.J. Ding, Mater. Sci. Eng. A 692, 9 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Zou, L.H. Zhang, Y. Li, H.T. Wang, J.B. Liu, P.K. Liaw, H.B. Bei, Z.W. Zhang, J. Alloys Compd. 735, 2625 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Zeng, B. Jiang, Q.R. Yang, G.F. Quan, J.J. He, Z.T. Jiang, F.S. Pan, Mater. Sci. Eng. A 700, 59 (2017)CrossRefGoogle Scholar
  7. 7.
    S.A. Askariani, H. Pishbin, M. Moshref-Javadi, J. Alloys Compd. 724, 859 (2017)CrossRefGoogle Scholar
  8. 8.
    Z.L. Zhao, Z.W. Sun, W. Liang, Y. Wang, L.P. Bian, Mater. Sci. Eng. A 702, 206 (2017)CrossRefGoogle Scholar
  9. 9.
    A.A. Nayeb-Hashemi, J.B. Clark, A.D. Pelton, Bull. Alloys Phase Diagr. 5, 365 (1984)CrossRefGoogle Scholar
  10. 10.
    P.H.R. Pereira, Y. Huang, M. Kawasaki, T.G. Langdon, J. Mater. Res. 32, 4541 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Furui, H. Kitamura, H. Anada, T.G. Langdon, Acta Mater. 55, 1083 (2007)CrossRefGoogle Scholar
  12. 12.
    K. Lin, Z.X. Kang, Q. Fang, J.Y. Zhang, Adv. Eng. Mater. 16, 381 (2014)CrossRefGoogle Scholar
  13. 13.
    H.P. Yang, M.W. Fu, S. To, G.C. Wang, Mater. Des. 112, 151 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Karami, R. Mahmudi, Mater. Sci. Eng. A 576, 156 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Matsunoshita, K. Edalati, M. Furui, Z. Horita, Mater. Sci. Eng. A 640, 443 (2015)CrossRefGoogle Scholar
  16. 16.
    F.R. Cao, G.Q. Xue, G.M. Xu, Mater. Sci. Eng. A 704, 360 (2017)CrossRefGoogle Scholar
  17. 17.
    R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005)CrossRefGoogle Scholar
  18. 18.
    A.P. Gerlich, Mater. Sci. Technol. 33, 1139 (2017)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Crit. Rev. Solid State Mater. Sci. 43, 269 (2018)CrossRefGoogle Scholar
  20. 20.
    G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34, 1 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Raja, P. Biswas, V. Pancholi, Mater. Sci. Eng. A 725, 492 (2018)CrossRefGoogle Scholar
  22. 22.
    F. Khan, S.K. Panigrahi, J. Alloys Compd. 747, 71 (2018)CrossRefGoogle Scholar
  23. 23.
    G.H. Cao, D.T. Zhang, F. Chai, W.W. Zhang, C. Qiu, Mater. Sci. Eng. A 642, 157 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Orozco-Caballero, M. Álvarez-Leal, P. Hidalgo-Manrique, C.M. Cepeda-Jiménez, O.A. Ruano, F. Carreño, Mater. Sci. Eng. A 680, 329 (2017)CrossRefGoogle Scholar
  25. 25.
    P. Minárik, J. Veselý, J. Čížek, M. Zemková, T. Vlasák, T. Krajňák, J. Kubásek, R. Krála, D. Hofman, J. Stráská, Mater. Charact. 140, 207 (2018)CrossRefGoogle Scholar
  26. 26.
    L.L. Tang, Y.H. Zhao, R.K. Islamgaliev, R.Z. Valiev, Y.T. Zhu, J. Alloys Compd. 721, 577 (2017)CrossRefGoogle Scholar
  27. 27.
    J.P. Young, H. Askari, Y. Hovanski, M.J. Heiden, D.P. Field, Mater. Charact. 101, 9 (2015)CrossRefGoogle Scholar
  28. 28.
    I. Roy, M. Chauhan, E.J. Lavernia, F.A. Mohamed, Metall. Mater. Trans. A 37, 721 (2006)CrossRefGoogle Scholar
  29. 29.
    O.V. Rofman, Philos. Mag. 98, 2120 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Kawasaki, K. Kubota, K. Higashi, T.G. Langdon, Mater. Sci. Eng. A 429, 334 (2006)CrossRefGoogle Scholar
  31. 31.
    X.H. Liu, H.B. Zhan, S.H. Gu, Z.K. Qu, R.Z. Wu, M.L. Zhang, Mater. Sci. Eng. A 528, 6157 (2011)CrossRefGoogle Scholar
  32. 32.
    F.R. Cao, F. Xia, H.L. Hou, H. Ding, Z.Q. Li, Mater. Sci. Eng. A 637, 89 (2015)CrossRefGoogle Scholar
  33. 33.
    T.G. Langdon, Acta Metall. Mater. 42, 2437 (1994)CrossRefGoogle Scholar
  34. 34.
    T.G. Langdon, J. Mater. Sci. 44, 5998 (2009)CrossRefGoogle Scholar
  35. 35.
    F.A. Mohamed, Materials 4, 1194 (2011)CrossRefGoogle Scholar
  36. 36.
    T.G. Langdon, Metall. Trans. A 13, 689 (1982)CrossRefGoogle Scholar
  37. 37.
    O.A. Ruano, J. Wadsworth, O.D. Sherby, J. Mater. Sci. 20, 3735 (1985)CrossRefGoogle Scholar
  38. 38.
    V. Jain, R.S. Mishra, R. Verma, E. Essadiqi, Scr. Mater. 68, 447 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Álvarez-Leal, A. Orozco-Caballero, F. Carreño, O.A. Ruano, Mater. Sci. Eng. A 710, 240 (2018)CrossRefGoogle Scholar
  40. 40.
    H. Shahmir, J.Y. He, Z.P. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 685, 342 (2017)CrossRefGoogle Scholar
  41. 41.
    A. Orozco-Caballero, M. Álvarez-Leal, D. Verdera, P. Rey, O.A. Ruano, F. Carreño, Mater. Des. 125, 116 (2017)CrossRefGoogle Scholar
  42. 42.
    W.J. Kim, M.J. Kim, J.Y. Wang, Mater. Sci. Eng. A 516, 17 (2009)CrossRefGoogle Scholar
  43. 43.
    K. Sotoudeh, P.S. Bate, Acta Mater. 58, 1909 (2010)CrossRefGoogle Scholar
  44. 44.
    K. Sotoudeh, N. Ridley, F.J. Humphreys, P.S. Bate, Mat.-wiss. u.Werkstofftech 43, 794 (2012)CrossRefGoogle Scholar
  45. 45.
    W.J. Kim, I.B. Park, Scr. Mater. 68, 179 (2013)CrossRefGoogle Scholar
  46. 46.
    T.J. Lee, Y.B. Park, W.J. Kim, Mater. Sci. Eng. A 580, 133 (2013)CrossRefGoogle Scholar
  47. 47.
    R. Raj, M.F. Ashby, Metall. Trans. A 2, 1113 (1971)CrossRefGoogle Scholar
  48. 48.
    F.R. Cao, H. Ding, Y.L. Li, G. Zhou, J.Z. Cui, Mater. Sci. Eng. A 527, 2335 (2010)CrossRefGoogle Scholar
  49. 49.
    M. Kawasaki, R.B. Figueiredo, T.G. Langdon, Adv. Eng. Mater. 18, 127 (2016)CrossRefGoogle Scholar
  50. 50.
    H. Masuda, T. Kanazawa, H. Tobe, E. Sato, Scr. Mater. 149, 84 (2018)CrossRefGoogle Scholar
  51. 51.
    R. Korla, A.H. Chokshi, Metall. Mater. Trans. A 45A, 698 (2014)CrossRefGoogle Scholar
  52. 52.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Metals Park, 2011)Google Scholar
  53. 53.
    G.S. Sun, L.X. Du, J. Hu, H. Xie, R.D.K. Misra, Mater. Des. 117, 223 (2017)CrossRefGoogle Scholar
  54. 54.
    M.E. Hosseini, S.J. Hosseinipour, M.B. Jooybari, Iran. J. Sci. Technol. Trans. Mech. Eng. 42, 41 (2018)CrossRefGoogle Scholar
  55. 55.
    E.I. Galindo-Nava, G. Torres-Villasenor, P.E.J. Rivera-Diaz-del-Castillo, Mater. Sci. Technol. 31, 677 (2015)CrossRefGoogle Scholar
  56. 56.
    A.H. Chokshi, A.K. Mukherjee, T.G. Langdon, Mater. Sci. Eng. R 10, 237 (1993)CrossRefGoogle Scholar
  57. 57.
    A.H. Chokshi, J. Mater. Sci. 21, 2073 (1986)CrossRefGoogle Scholar
  58. 58.
    H.J. Frost, M.F. Ashby, Deformation Mechanism Maps (Pergamon Press, Oxford, 1982), p. 21Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Fu Rong Cao
    • 1
    Email author
  • Guo Qiang Xue
    • 1
    • 2
  • Bi Jin Zhou
    • 1
    • 3
  • Shun Cheng Wang
    • 4
  1. 1.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Technological CenterXi’an Supercrystal Science and Technology Development Co. Ltd.Xi’anChina
  3. 3.School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Institute of Materials Processing and Forming TechnologyGuangdong General Research Institute of Industrial TechnologyGuangzhouChina

Personalised recommendations