Advertisement

Metals and Materials International

, Volume 24, Issue 1, pp 101–111 | Cite as

Effect of stabilization annealing on SCC susceptibility of β-annealed Ti-6Al-4V alloy in 0.6 M NaCl solution

  • Daeho Jeong
  • Jiho Park
  • Soojin Ahn
  • Hyokyung Sung
  • Yongnam Kwon
  • Sangshik Kim
Article

Abstract

The effect of stabilization annealing on the stress corrosion cracking (SCC) susceptibility of β-annealed Ti-6Al-4V (Ti64) alloy was examined in an aqueous 0.6 M NaCl solution under various applied potentials of +0.1, -0.05 and -0.1 V vs Ecorr, respectively, at a strain rate of 10 -6 s -1. The stabilization annealing substantially improved the resistance to SCC of β-annealed Ti64 alloy in 0.6 M NaCl solution under cathodic applied potentials, while the effect was marginal under an anodic applied potential. It was also noted that the areal fraction between ductile and brittle fracture of β-annealed Ti64 specimens, which were slow strain rate tested in 0.6 M NaCl solution, varied with stabilization annealing and applied potentials. The effect of stabilization annealing on the SCC behavior of β-annealed Ti64 alloy in SCC-causing environment was discussed based on the micrographic and fractographic observation.

Keywords

alloy hydrogen corrosion Ti-6Al-4V β-annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Chandler, Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys, p. 459, ASM International, Ohio, USA (1996).Google Scholar
  2. 2.
    R. Wanhill and S. Barter, Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys, p. 1, Springer Science & Business Media, Berlin, Germany (2011).Google Scholar
  3. 3.
    G. Welsch, R. Boyer, and E. W. Collings, Materials Properties Handbook: Titanium Alloys, p. 484, ASM International, Ohio, USA (1993).Google Scholar
  4. 4.
    R. P. Gangloff and B. P. Somerday, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classe, p. 970, Elsevier, Amsterdam, Netherlands (2012).CrossRefGoogle Scholar
  5. 5.
    G. R. Yoder, L. A. Cooley, and T. W. Crooker, Metall. Mater. Trans. A 9, 1413 (1978).CrossRefGoogle Scholar
  6. 6.
    F. C. Campbell, Jr, Manufacturing Technology for Aerospace Structural Materials, p. 152, Elsevier, Amsterdam, Netherlands (2011).Google Scholar
  7. 7.
    G. R. Yoder, L. A. Cooley, and T. W. Crooker, A Micromechanistic Interpretation of Cyclic Crack-Growth Behavior in a Beta-Annealed Ti-6Al-4V Alloy, No. NRL-8048. Naval Research Lab, Washington DC, USA (1976).CrossRefGoogle Scholar
  8. 8.
    L. M. Gammon, R. D. Briggs, J. M. Packard, K. W. Batson, R. Boyer, and C. W. Domby, Vol. 9: Metallography and Microstructures, p. 899, ASM Iternational, Ohio, USA (1985).Google Scholar
  9. 9.
    F. H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, p. 94, ASM International, Ohio, USA (2015).Google Scholar
  10. 10.
    M. J. Donachie, Titanium: A Technical Guide, 2nd Edition, p. 58, ASM International, Ohio, USA (2000).Google Scholar
  11. 11.
    T. V. Rajan, C. P. Sharma, and A. Sharma, Heat Treatment: Principles and Techniques, p. 305, PHI Learning Pvt. Ltd., New Delhi, India (2011).Google Scholar
  12. 12.
    M. J. Donachiel, Jr, Heat Treating Titanium and Its Alloys, p. 49, Heat Treating Progress, ASM International, Ohio, USA (1993).Google Scholar
  13. 13.
    W. G. Seo, D. H. Jeong, D. J. Lee, H. K. Sung, Y. N. Kwon, and S. S. Kim, Met. Mater. Int. 23, 648 (2017).CrossRefGoogle Scholar
  14. 14.
    B. D. Venkatesh, D. L. Chen, and S. D. Bhole, Mat. Sci. Eng. A 506, 117 (2009).CrossRefGoogle Scholar
  15. 15.
    T. Morita, K. Hatsuoka, T. Iizuka, and K. Kawasaki, Mater. T. JIM, 46, 1681 (2005).CrossRefGoogle Scholar
  16. 16.
    S. L. Semiatin, S. L. Knisley, P. N. Fagin, F. Zhang, and D. R. Barker, Metall. Mater. Trans. A 34, 2377 (2003).CrossRefGoogle Scholar
  17. 17.
    O. M. Ivasishin, S. L. Semiatin, P. E. Markovsky, S. V. Shevchenko, and S. V. Ulshin, Mat. Sci. Eng. A 337, 88 (2002).CrossRefGoogle Scholar
  18. 18.
    J. K. Gregory and H. G. Brokmeier, Mat. Sci. Eng. A 203, 365 (1995).CrossRefGoogle Scholar
  19. 19.
    J. Gu and D. Hardie, J. Mater. Sci. 32, 609 (1997).CrossRefGoogle Scholar
  20. 20.
    S. Cao, S. Zhu, C. V. S. Lim, X. Zhou, X. Chen, B. R. W. Hinton, et al. Corros. Sci. 125, 29(2017).CrossRefGoogle Scholar
  21. 21.
    A. L. Pilchak, A. H. Young, and J. C. Williams, Corros. Sci. 52, 3287 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Cao, C. V. S. Lim, B. Hinton, and X. Wu, Corros. Sci. 116, 22 (2017).CrossRefGoogle Scholar
  23. 23.
    S. Barella, C. Mapellim, and R. Venturini, Metall. Sci. Tech. 23, 19 (2005).Google Scholar
  24. 24.
    F. Link and D. Munz, Corros. Sci. 13, 809 (1973).CrossRefGoogle Scholar
  25. 25.
    W. T. Tsai, C. L. Lin, and S. J. Pan, Corros. Sci. 76, 494 (2013).CrossRefGoogle Scholar
  26. 26.
    M. D. Pustode, V. S. Raja, and M. Tamilselvi, Corrosion 2013, p. 2975, NACE International, Florida, USA (2013).Google Scholar
  27. 27.
    P. J. Moreland and W. K. Boyd, Corrosion 26, 153 (1970).CrossRefGoogle Scholar
  28. 28.
    G. V. Voort, Metallographic Preparation of Titanium and Its Alloys, p. 2, Buehler, Illinois, USA (2015).Google Scholar
  29. 29.
    D. H. Jeong, Y. N. Kwon, M. Goto, and S.S. Kim, Int. Jour. Mech. Mater. Eng. 12, 1 (2017).CrossRefGoogle Scholar
  30. 30.
    ASTM Standard G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, Annual Book of ASTM Standards (2000).Google Scholar
  31. 31.
    Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 80, 28 (2014).CrossRefGoogle Scholar
  32. 32.
    H. Y. Ha, C. H. Lee, T. H. Lee, and S. S. Kim, Materials 10, 294 (2017).CrossRefGoogle Scholar
  33. 33.
    H. Y. Ha, W. G. Seo, J. Y. Park, T. H. Lee, and S. S. Kim, Mater. Charact. 119, 200 (2016).CrossRefGoogle Scholar
  34. 34.
    D. H. Jeong, W. J. Jung, Y. J. Kim, M. Goto, and S. S. Kim, Meta. Mater. Int. 21, 785 (2015).CrossRefGoogle Scholar
  35. 35.
    Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 80, 28 (2014).CrossRefGoogle Scholar
  36. 36.
    G. Welsch, R. Boyer, and E. W. Collings, Materials Properties Handbook: Titanium Alloys, p. 6, ASM International, Ohio, USA (1993).Google Scholar
  37. 37.
    D. H. Jeong, S. G. Lee, I. S. Seo, J. Y. Yoo, and S. S. Kim, Met. Mater. Int. 21, 7 (2015).CrossRefGoogle Scholar
  38. 38.
    Y. J. Kim, J. K. Kwon, D. H. Jeong, N. S. Woo, M. Goto, and S. S. Kim, Met. Mater. Int. 20, 851 (2014).CrossRefGoogle Scholar
  39. 39.
    J. T. Burns, S. S. Kim, and R. P. Gangloff, Corros. Sci. 52, 498 (2010).CrossRefGoogle Scholar
  40. 40.
    Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 88, 337 (2013).CrossRefGoogle Scholar
  41. 41.
    H. J. Lee, Y. J. Kim, Y. I. Jeong, and S. S. Kim, Corros. Sci. 55, 10 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Daeho Jeong
    • 1
  • Jiho Park
    • 1
  • Soojin Ahn
    • 1
  • Hyokyung Sung
    • 1
  • Yongnam Kwon
    • 2
  • Sangshik Kim
    • 1
  1. 1.Department of Materials Engineering and Convergence Technology, ReCAPTGyeongsang National UniversityJinjuRepublic of Korea
  2. 2.Department of Materials ProcessingKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations