Advertisement

Metals and Materials International

, Volume 23, Issue 6, pp 1097–1105 | Cite as

Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds

  • Jeki Jung
  • Jeong-Jung Oak
  • Yong-Hwan Kim
  • Yi Je Cho
  • Yong Ho ParkEmail author
Research Paper

Abstract

The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.

Keywords

alloys extrusion wear scanning electron microscopy (SEM) wear map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Liu, S. R. Yu, Z. Q. Huang, G. Ma, and Y. Liu, J. Alloy. Compd. 537, 12 (2012).CrossRefGoogle Scholar
  2. 2.
    W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. De Smet, A. Vieregge, et al. Mat. Sci. Eng. A 280, 37 (2000).CrossRefGoogle Scholar
  3. 3.
    M. J. Kim, G.-Y. Kim, K. J. Euh, Y.-M. Rhyim, and K.-A. Lee, Korean J. Met. Mater. 53, 169 (2015).CrossRefGoogle Scholar
  4. 4.
    D. D. Luong, O. M. Strbik Iii, V. H. Hammond, N. Gupta, and K. Cho, J. Alloy. Compd. 550, 412 (2013).CrossRefGoogle Scholar
  5. 5.
    T. Dursun and C. Soutis, Mater. Design 56, 862 (2014).CrossRefGoogle Scholar
  6. 6.
    L. L. Gao and X. H. Cheng, Wear 265, 986 (2008).CrossRefGoogle Scholar
  7. 7.
    N. D. Alexopoulos, Z. Velonaki, C. I. Stergiou, and S. K. Kourkoulis, Corros. Sci. 102, 413 (2016).CrossRefGoogle Scholar
  8. 8.
    S. C. Wang and M. J. Starink, Int. Mater. Rev. 50, 193 (2005).CrossRefGoogle Scholar
  9. 9.
    I. Ciftci, M. Turker, and U. Seker, Mater. Design 25, 251 (2004).CrossRefGoogle Scholar
  10. 10.
    J.-H. Eom, Y.-K. Seo, Y.-W. Kim, and S.-J. Lee, Met. Mater. Int. 21, 525 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Roy, B. Venkataraman, V. V. Bhanuprasad, Y. R. Mahajan, and G. Sundararajan, Metall. Trans. A 23, 2833 (1992).CrossRefGoogle Scholar
  12. 12.
    S. Sawla and S. Das, Wear 257, 555 (2004).CrossRefGoogle Scholar
  13. 13.
    J. An, C. Dong, and Q. Y. Zhang, Tribol. Int. 36, 25 (2003).CrossRefGoogle Scholar
  14. 14.
    M. Hosseinifar and D. V. Malakhov, Metall. Mater. Trans. A 42, 825 (2011).CrossRefGoogle Scholar
  15. 15.
    R. Buchheit, R. Grant, P. Hlava, B. McKenzie, and G. Zender, J. Electrochem. Soc. 144, 2621 (1997).CrossRefGoogle Scholar
  16. 16.
    Y. A. Bagaryatsky, Dokl. Akad. Nauk SSSR 87, 357 (1952).Google Scholar
  17. 17.
    Y. Conde and A. Mortensen, Adv. Eng. Mater. 10, 849 (2008).CrossRefGoogle Scholar
  18. 18.
    A. Couture, Int. Cast Met. J. 6, 9 (1981).Google Scholar
  19. 19.
    J. F. Nie, Scripta Mater. 48, 1009 (2003).CrossRefGoogle Scholar
  20. 20.
    Z. Zhang and D. L. Chen, Scripta Mater. 54, 1321 (2006).CrossRefGoogle Scholar
  21. 21.
    J. Archard, J. Appl. Phys. 24, 981 (1953).CrossRefGoogle Scholar
  22. 22.
    B. S. Murty, S. A. Kori, and M. Chakraborty, Int. Mater. Rev. 47, 3 (2002).CrossRefGoogle Scholar
  23. 23.
    T. M. Chandrashekharaiah and S. A. Kori, Tribol. Int. 42, 59 (2009).CrossRefGoogle Scholar
  24. 24.
    A. K. Prasada Rao, K. Das, B. S. Murty, and M. Chakraborty, Wear 257, 148 (2004).CrossRefGoogle Scholar
  25. 25.
    M. A. Herbert, R. Maiti, R. Mitra, and M. Chakraborty, Wear 265, 1606 (2008).CrossRefGoogle Scholar
  26. 26.
    E. J. Mittemeijer, Fundamentals of Materials Science, pp. 371–461, Springer, Germany (2010).CrossRefGoogle Scholar
  27. 27.
    J. Zhang and A. T. Alpas, Mat. Sci. Eng. A 160, 25 (1993).CrossRefGoogle Scholar
  28. 28.
    N. P. Suh, Wear 25, 111 (1973).CrossRefGoogle Scholar
  29. 29.
    K. M. Jasim and E. S. Dwarakadasa, Wear 119, 119 (1987).CrossRefGoogle Scholar
  30. 30.
    K. Mohammed Jasim and E. S. Dwarakadasa, J. Mater. Sci. Lett. 11, 421 (1992).CrossRefGoogle Scholar
  31. 31.
    D. A. Rigney, Wear 245, 1 (2000).CrossRefGoogle Scholar
  32. 32.
    J.-J. Liu, Y. Chen, and Y.-Q. Cheng, Wear 154, 259 (1992).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Jeki Jung
    • 1
  • Jeong-Jung Oak
    • 2
  • Yong-Hwan Kim
    • 3
  • Yi Je Cho
    • 1
  • Yong Ho Park
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringPusan National UniversityBusanRepublic of Korea
  2. 2.Material Analysis LaboratoryDAE-IL CorporationUlsanRepublic of Korea
  3. 3.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations