Metals and Materials International

, Volume 24, Issue 1, pp 130–135 | Cite as

Enhanced properties of nanostructured TiO2-graphene composites by rapid sintering

  • In-Jin Shon
  • Jin-Kook Yoon
  • Kyung-Tae Hong


Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.


nanomaterials sintering fracture toughness composite hardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, Mater. Lett. 57, 355 (2002).CrossRefGoogle Scholar
  2. 2.
    C. Garzella, E. Comini, E. Bontempi, L. E. Depero, C. Frigeri, and G. Sberveglieri, Sens. Actuat. B 83, 230 (2002).CrossRefGoogle Scholar
  3. 3.
    K. Iketani, R. D. Sun, M. Toki, K. Hirota, and O. Yamaguchi, J. Phys. Chem. Solids 64, 507 (2003).CrossRefGoogle Scholar
  4. 4.
    D. Qin, W. Chang, J. Zhou, and Y. Chen, Thermochim. Acta 236, 205 (1994).CrossRefGoogle Scholar
  5. 5.
    I.-J. Shon, G.-W. Lee, J.-M. Doh, and J.-K. Yoon, Electron. Mater. Lett. 9, 219 (2013).CrossRefGoogle Scholar
  6. 6.
    I.-J. Shon, Korean J. Met. Mater. 54, 893 (2016).CrossRefGoogle Scholar
  7. 7.
    B.-R. Kang and I.-J. Shon, Korean J. Met. Mater. 53, 320 (2015).CrossRefGoogle Scholar
  8. 8.
    L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Y. Chen, et al. Carbon 61, 105 (2013).CrossRefGoogle Scholar
  9. 9.
    L.-C. Tang, Y.-J. Wan, D. Yan, Y.-B. Pei, L. Zhao, L.-B. Wu, et al. Cabon 60, 16 (2013).Google Scholar
  10. 10.
    M. S. El-Eskandarany, J. Alloy. Compd. 305, 225 (2000).CrossRefGoogle Scholar
  11. 11.
    K. Morita, K. Hiraga, B.-N. Kim, H. Yoshida, and Y. Sakka, Scripta Mater. 53, 1007 (2005).CrossRefGoogle Scholar
  12. 12.
    M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005).CrossRefGoogle Scholar
  13. 13.
    F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard, and J. C. Liepce, Mat. Sci. Eng. A 262, 279 (1999).CrossRefGoogle Scholar
  14. 14.
    B.-R. Kang, J.-K. Yoon, K.-T. Hong, and I.-J. Shon, Met. Mater. Int. 21, 698 (2015).CrossRefGoogle Scholar
  15. 15.
    C. Suryanarayana and M. Grant Norton, X-ray Diffraction a Practical Approach, p. 207, Plenum Press, New York, USA (1998).Google Scholar
  16. 16.
    I.-J. Shon, Korean J. Met. Mater. 54, 826 (2016).CrossRefGoogle Scholar
  17. 17.
    Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).CrossRefGoogle Scholar
  18. 18.
    J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).CrossRefGoogle Scholar
  19. 19.
    K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel CellChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Materials Architecturing Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations