Metals and Materials International

, Volume 23, Issue 6, pp 1176–1187 | Cite as

Effects of drawing strain and post-annealing conditions on microstructural evolution and tensile properties of medium- and high-carbon steels

  • Sung Hyuk Park
  • Taekyung Lee
  • Sang-Hoon Kim
  • Chong Soo Lee
Research Paper


Variation in the microstructure and tensile properties with the warm drawing strain and subsequent annealing of 0.45 wt% C (45C) medium-carbon steel and 0.82 wt% C (82C) high-carbon steel was investigated. The morphology and size of ferrite and pearlite changed considerably with applied strain during drawing and with annealing temperature and time, which made the tensile properties of the drawn steels vary considerably. With increasing drawing strain to ~2.5, the yield strength increased significantly from 393 to 1332 MPa for the 45C steel and from 673 to 1876 MPa for the 82C steel; this was attributed mainly to the strain hardening caused by severely deformed ferrite and/or enhanced particle hardening caused by cementite segmentation. During annealing of heavily drawn steels, ferrite grain growth and coarsening of broken cementite particles occurred simultaneously, which caused effective recovery of the ductility of severely drawn steels. These results demonstrate that the tensile strength and elongation of medium- and high-carbon steel wires can be tuned considerably by controlling the extents of drawing and annealing, thereby widening their applicability and facilitating their manufacture to match their mechanical properties to each application.


metals annealing drawing microstructure tensile test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. Dieter, Mechanical Metallurgy, SI Metric, pp. 532–548, McGraw-Hill, London, UK (1998).Google Scholar
  2. 2.
    G. Langford, Metall. Trans. A 8, 861 (1977).CrossRefGoogle Scholar
  3. 3.
    J. Languillaume, G. Kapelski, and B. Baudelet, Acta Mater. 45, 1201 (1997).CrossRefGoogle Scholar
  4. 4.
    W. J. Nam and C. M. Bae, Mat. Sci. Eng. A 203, 278 (1995).CrossRefGoogle Scholar
  5. 5.
    L. Zhou, F. Fang, X. Zhou, Y. Tu, Z. Xie, and J. Jiang, Scripta Mater. 120, 5 (2016).CrossRefGoogle Scholar
  6. 6.
    H. M. Baek, S. K. Hwang, I. H. Son, and Y. T. Im, Met. Mater. Int. 22, 1083 (2016).CrossRefGoogle Scholar
  7. 7.
    F. Fang, Y. Zhao, P. Liu, L. Zhou, X. Hu, X. Zhou, et al. Mat. Sci. Eng. A 608, 11 (2014).CrossRefGoogle Scholar
  8. 8.
    J. K. Hwang, I. H. Son, J. Y. Yoo, A. Zargaran, and N. J. Kim, Met. Mater. Int. 21, 815 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. J. Li, P. Choi, C. Borchers, S. Westerkamp, D. Raabe, R. Kirchheim, et al. Acta Mater. 59, 3965 (2011).CrossRefGoogle Scholar
  10. 10.
    F. Fang, L. Zhou, X. Hu, X. Zhou, Y. Tu, Z. Xie, et al. Mater. Design 79, 60 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Li, D. Raabe, M. Herbig, P. Choi, S. Goto, A. Kostka, et al. Phys. Rev. Lett. 113, 106104 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Languillaume, G. Kapelski, and B. Baudelet, Mater. Lett. 33, 241 (1997).CrossRefGoogle Scholar
  13. 13.
    Y. J. Li, P. P. Choi, S. Goto, C. Borchers, D. Raabe, and R. Kirchheim, Acta Mater. 60, 4005 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Takahashi, M. Kosaka, K. Kawakami, and T. Tarui, Acta Mater. 60, 387 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Zelin, Acta Mater. 50, 4431 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Gensamer, E. B. Pearsall, W. S. Pellini, and J. R. Low, Metallogr. Microstruct. Anal. 1, 171 (2012).CrossRefGoogle Scholar
  17. 17.
    E. Orowan, Symposium on Internal Stresses in Metals and Alloys, pp. 448–453, Institute of Metals, London, UK (1948).Google Scholar
  18. 18.
    L. Ratke and P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing, pp. 117–126, Springer, Germany (2002).Google Scholar
  19. 19.
    W. Ostwald, Lehrbuch der Allgemeinen Chemie, Vol. 2, Part 1, pp. 1–44, Leipzig, Germany (1896).Google Scholar
  20. 20.
    J. Li, C. Guo, Y. Ma, Z. Wang, and J. Wang, Acta Mater. 90, 10 (2015).CrossRefGoogle Scholar
  21. 21.
    Z. Q. Lv, S. H. Sun, Z. H. Wang, M. G. Qv, P. Jiang, and W. T. Fu, Mat. Sci. Eng. A 489, 107 (2008).CrossRefGoogle Scholar
  22. 22.
    E. O. Hall, Yield Point Phenomena in Metals and Alloys, pp. 16–49, Plenum Press, New York, USA (1970).CrossRefGoogle Scholar
  23. 23.
    E. Nes, Acta Metall. Mater. 43, 2189 (1995).CrossRefGoogle Scholar
  24. 24.
    S. Lee, J. Jeong, Y. Kim, S. M. Han, D. Kiener, and S. H. Oh, Acta Mater. 110, 283 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Sung Hyuk Park
    • 1
  • Taekyung Lee
    • 2
  • Sang-Hoon Kim
    • 1
  • Chong Soo Lee
    • 3
  1. 1.School of Materials Science and EngineeringKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Magnesium Research CenterKumamoto UniversityKumamotoJapan
  3. 3.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations