Advertisement

Metals and Materials International

, Volume 23, Issue 5, pp 877–883 | Cite as

Effect of Ti content on creep properties of Ni-base single crystal superalloys

  • Baig Gyu Choi
  • In Soo Kim
  • Hyun Uk Hong
  • Jeonghyeon Do
  • Joong Eun Jung
  • Chang Yong Jo
Article
  • 118 Downloads

Abstract

The effect of Ti content on the creep properties and microstructures of experimental Ni-base single crystal superalloys has been investigated. The experimental alloys were designed to provide better high temperature properties than the commercial single crystal alloy CMSX-4. The creep properties of the experimental alloys, Alloy 2 and Alloy 3, were superior to those of CMSX-4. Alloy 3 showed a longer creep life than Alloy 2 at 900 °C and 950 °C, while it has similar creep life with Alloy 2 at 982 °C. Transmission electron microscopy micrographs of the experimental alloys after the creep test showed distinct deformation features as a function of temperature and Ti content. The dissociation of dislocations into partial dislocations with stacking faults in Alloy 3 was found to improve resistance to creep deformation at 950 °C. The effect of Ti on the creep deformation mechanism was not evident at 982 °C, which resulted in similar creep properties in both experimental alloys. The transition of the γ′ cutting mechanism from dislocations coupled with stacking faults to anti-phase boundary coupled pairs occurred both in Alloy 2 and Alloy 3. However, the transition temperature was higher in Alloy 3 than in Alloy 2 because of the difference in Ti contents.

Keywords

alloys Ni-based superalloy casting creep transmission electron microscopy (TEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Gu, C. H. Sung, J. H. Shin, S. M. Seo, and J. H. Lee, Korean J. Met. Mater. 54, 261 (2016).CrossRefGoogle Scholar
  2. 2.
    J. S. Lee, S. H. Kwon, B. G. Yoon, B. M. Chang, Y. G. Jung, and J. H. Lee, Korean J. Met. Mater. 54, 838 (2016).CrossRefGoogle Scholar
  3. 3.
    R. Hashizume, A. Yoshinari, T. Kiyono, Y. Murata, and M. Morinaga, Superalloys 2004 (eds. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, et al.), p. 53, TMS, Warrendale, USA (2000).Google Scholar
  4. 4.
    Y. Koizumi, T. Kobayashi, T. Yokogawa, J. Zhang, M. Osawa, M. Arai, et al. Superalloys 2004 (eds. K. A. Green et al.), p. 35, TMS, Warrendale, USA (2000).Google Scholar
  5. 5.
    M. Zietara, S. Neumeier, M. Göken, and A. Czyrska-Filemonowicz, Met. Mater. Int. 23, 126 (2017).CrossRefGoogle Scholar
  6. 6.
    T. Kobayashi, Y. Koizumi, H. Harada, and T. Murakumo, Acta Mater. 52, 3737 (2004).CrossRefGoogle Scholar
  7. 7.
    J. X. Zhang, T. Murakumo, H. Harada, and Y. Koizumi, Scripta Mater. 48, 287 (2003).CrossRefGoogle Scholar
  8. 8.
    R. A. Hobbs, L. Zhang, C. M. F. Rae, S. Tin, A. K. Koul, and G. H. Gessinger, Mat. Sci. Eng. A 489, 65 (2008).CrossRefGoogle Scholar
  9. 9.
    C. Tian, G. Han, C. Cui, and X. Sun, Mater. Design 64, 316 (2014).CrossRefGoogle Scholar
  10. 10.
    J. H. Zhang, T. Jin, Y. B. Xu, Z. Q. Hu, and X. Wu, J. Mater. Sci. Tech. 18, 159 (2002).Google Scholar
  11. 11.
    S. Ochiai, Y. Oya, and T. Suzuki, Acta Metall. Mater. 32, 289 (1984).CrossRefGoogle Scholar
  12. 12.
    G. N. Maniar and J. E. Bridge, Metallography 5, 91 (1972).CrossRefGoogle Scholar
  13. 13.
    Y. F. Wen, J. Sun, and J. Huang, T. Nonferr. Metal. Soc. 22, 661 (2012).Google Scholar
  14. 14.
    H. P. Wang, M. Sluiter, and Y. Kawazoe, Mater. T. JIM 40, 1301 (1999).CrossRefGoogle Scholar
  15. 15.
    X. P. Tan, J. L. Liu, T. Jin, Z. Q. Hu, H. U. Hong, C. Y. Jo, et al. Mat. Sci. Eng. A 528, 8381 (2011).CrossRefGoogle Scholar
  16. 16.
    G. R. Leverant and B. H. Kear, Metall. Mater. Trans. B 1, 491 (1970).CrossRefGoogle Scholar
  17. 17.
    C. M. F. Rae, N. Matan, and R. C. Reed, Mat. Sci. Eng. A 300, 125 (2001).CrossRefGoogle Scholar
  18. 18.
    T. Link and M. Feller-Kniepmeier, Metall. Mater. Trans. A 23, 99 (1992).CrossRefGoogle Scholar
  19. 19.
    R. C. Reed, The Superalloys, pp.65–73, Cambridge University Press, Cambridge, UK (2006).CrossRefGoogle Scholar
  20. 20.
    W. W. Milligan and S. D. Antolovich, Metall. Mater. Trans. A 22, 2309 (1991).CrossRefGoogle Scholar
  21. 21.
    L. Remy and A. Pineau, Mater. Sci. Eng. 36, 47 (1978).CrossRefGoogle Scholar
  22. 22.
    S. Tian, B. Qian, Y. Su, H. Yu, and X. Yu, Mater. Sci. Forum 706-709, 2474 (2012).CrossRefGoogle Scholar
  23. 23.
    T. Kruml, B. Viguier, J. Bonneville, and J. L. Martin, Mat. Sci. Eng. A 234-236, 755 (1997).CrossRefGoogle Scholar
  24. 24.
    J. S. Huo, J. T. Gou, L. Z. Zhou, X. Z. Qin, and G. S. Li, J. Mater. Eng. Perform. 16, 55 (2007).CrossRefGoogle Scholar
  25. 25.
    G. Bruno and H. C. Pinto, Superalloys 2004 (eds. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, et al.), p. 837, TMS, Warrendale, USA (2000).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Baig Gyu Choi
    • 1
  • In Soo Kim
    • 1
  • Hyun Uk Hong
    • 2
  • Jeonghyeon Do
    • 1
  • Joong Eun Jung
    • 1
  • Chang Yong Jo
    • 1
  1. 1.High Temperature Materials DepartmentKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.Department of Materials Science and EngineeringChangwon National UniversityChangwonRepublic of Korea

Personalised recommendations