Metals and Materials International

, Volume 23, Issue 5, pp 940–947 | Cite as

Properties and rapid sintering of a nanostructured tetragonal zirconia composites

  • In-Jin Shon
  • Jin-Kook Yoon
  • Kyung-Tae Hong


4YSZ is generally used as oxygen sensors, fuel cells, thermal barrier and hip and knee joint replacements as a result of these excellent properties with its high biocompatibility, low density, good resistance against corrosion, high ionic conductivity, hard phase and melting point. However, 4YTZ with coarse grain has low resistance to wear and abrasion because of low hardness and low fracture toughness at room temperature. The fracture toughness and hardness of a 4YTZ can be improved by forming nanostructured composites and addition of a second hard phase. In this study, nanostuctured 4YTZ-graphene composites with nearly full density were achieved using high-frequency induction heated sintering for one min at a pressure of 80 MPa. The rapid consolidation and addition of graphene to 4YTZ retained the nano-scale structure of the ceramic by inhibiting grain growth. The grain size of 4YTZ was reduced remarkably by the addition of graphene and the addition of graphene to 4YTZ greatly improved the fracture toughness without decrease of hardness.


nanomaterials sintering hardness fracture toughness graphene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. C. Singhal, Solid State Ionics 152, 405 (2002).CrossRefGoogle Scholar
  2. 2.
    J. Riegel, H. Neumann, H. M. Wiedenmann, Solid State Ionics 152-153, 783 (2002).CrossRefGoogle Scholar
  3. 3.
    M. N. Rahaman, A. Y. Yao, B. S. Bal, J. P. Garino, and M. D. Ries, J. Am. Ceram. Soc. 90, 1965 (2007).CrossRefGoogle Scholar
  4. 4.
    D. Mæland, C. Suciu, I. Wærnhus, and A. C. Hoffmann, J. Eur. Ceram. Soc. 29, 2537 (2009).CrossRefGoogle Scholar
  5. 5.
    S.-M. Kwon, S.-J. Lee, and I.-J. Shon, Ceram. Int. 41, 835 (2015).CrossRefGoogle Scholar
  6. 6.
    I.-J. Shon, H.-G. Jo, B.-S. Kim, J.-K. Yoon, and K.-T. Hong, Korean J. Met. Mater. 53, 474 (2015).CrossRefGoogle Scholar
  7. 7.
    L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, and Y. Chen, Carbon 61, 105 (2013).CrossRefGoogle Scholar
  8. 8.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  9. 9.
    C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).CrossRefGoogle Scholar
  10. 10.
    A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, and F. Miao, Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Sherif El-Eskandarany, J. Alloy. Compd. 305, 225 (2000).CrossRefGoogle Scholar
  12. 12.
    S.-J. Oh, B.-S. Kim, J.-K. Yoon, K.-T. Hong, and I.-J. Shon, Ceram. Int. 42, 9304 (2016).CrossRefGoogle Scholar
  13. 13.
    C. Xia, S. Zha, W. Yang, R. Peng, D. Peng, and G. Meng, Solid State Ionics 133, 287 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Keshimiri and O. Kesler, Acta Mater. 54, 4149 (2006).CrossRefGoogle Scholar
  15. 15.
    C. Suciu, A. C. Hoffmann, and P. Kosinski, J. Mater. Process. Tech. 202, 316 (2008).CrossRefGoogle Scholar
  16. 16.
    G. Dell’Agli and G. Mascolo, J. Eur. Ceram. Soc. 24, 915 (2004).CrossRefGoogle Scholar
  17. 17.
    N. H. Menzler, D. Lavergnat, F. Tietz, E. Sominski, E. Djurado, W. Fischer, et al. Ceram. Int. 29, 619 (2003).CrossRefGoogle Scholar
  18. 18.
    C. Laberty-Robert, F. Ansart, C. Deloget, M. Gaudon, and A. Rousset, Ceram. Int. 29, 151 (2003).CrossRefGoogle Scholar
  19. 19.
    C. A. da Silva, N. F. P. Ribeiro, and M. M. V. M. Souza, Ceram. Int. 35, 3441 (2009).Google Scholar
  20. 20.
    J. Jung and S. Kang, Scripta Mater. 56, 561 (2007).CrossRefGoogle Scholar
  21. 21.
    I.-J. Shon, Ceram. Int. 42, 16336 (2016).CrossRefGoogle Scholar
  22. 22.
    I.-J. Shon, Korean J. Met. Mater. 54, 826 (2016).CrossRefGoogle Scholar
  23. 23.
    S.-J. Oh, B.-S. Kim, J.-K. Yoon, K.-T. Hong, and I.-J. Shon, Ceram. Int. 42, 9304 (2016).CrossRefGoogle Scholar
  24. 24.
    B.-W. Kwak and I.-J. Shon, Ceram. Int. 42, 6487 (2016).CrossRefGoogle Scholar
  25. 25.
    C. Suryanarayana and M. Grant Norton, X-ray Diffraction a Practical Approach, p. 207, Plenum Press, New York, USA (1998).CrossRefGoogle Scholar
  26. 26.
    J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).CrossRefGoogle Scholar
  27. 27.
    Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).CrossRefGoogle Scholar
  28. 28.
    J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004).CrossRefGoogle Scholar
  29. 29.
    J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).CrossRefGoogle Scholar
  30. 30.
    Y. Gu, P. Shen, N.-N. Yang, and K.-Z. Cao, J. Alloy. Compd. 586, 80 (2014).CrossRefGoogle Scholar
  31. 31.
    R. Raj, M. Cologna, and J. S. C. Francis, J. Am. Ceram. Soc. 94, 1941 (2011).CrossRefGoogle Scholar
  32. 32.
    K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).CrossRefGoogle Scholar
  33. 33.
    S. Takeuchi, Scripta Mater. 44, 1483 (2001).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Division of Advanced Materials Engineering, the Research Center of Advanced Materials DevelopmentChonbuk National UniversityJeonbukRepublic of Korea
  2. 2.Materials Architecturing Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations