Advertisement

Metals and Materials International

, Volume 23, Issue 6, pp 1204–1215 | Cite as

Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness

  • Gyeong Yun Baek
  • Ki Yong LeeEmail author
  • Sang Hu Park
  • Do Sik ShimEmail author
Research Paper

Abstract

This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes in the metallurgical and mechanical properties of the high-speed tool steel M4 deposited on an AISI D2 substrate with changes in the substrate preheating temperature. Five preheating temperatures (100-500 °C; interval of 100 °C) were selected, and the changes in the temperature of the substrate during deposition were observed. As the preheating temperature of the substrate was increased, the temperature gradient between the melting layer and the substrate decreased; this prevented the formation of internal cracks, owing to thermal stress relief. Field-emission scanning electron microscopy showed that a dendritic structure was formed at the interface between the deposited layer and the substrate while a cellular microstructure was formed in the deposited layer. As the preheating temperature was increased, the sizes of the cells and precipitated carbides also increased. Furthermore, the hardness increased slightly while the strength and toughness decreased. Moreover, the tensile and impact properties deteriorated rapidly at excessively high preheating temperatures (greater than 500 °C). The results of this study can be used as preheating criteria for achieving the desired mechanical properties during the hardfacing of dies and molds.

Keywords

metals laser-assisted deposition mechanical properties scanning electron microscopy (SEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Conci, A. C. Bozzi, and A. R. Franco Jr, Wear 317, 188 (2014).CrossRefGoogle Scholar
  2. 2.
    J. S. Park, M. G. Lee, Y. J. Cho, J. H. Sung, M.-S. Jeong, D. H. Kim, et al. Met. Mater. Int. 22, 143 (2016).CrossRefGoogle Scholar
  3. 3.
    D. S. Shim, G. Y. Baek, J. S. Seo, G.-Y. Shin, K. P. Kim, and K. Y. Lee, Opt. Laser Technol. 86, 69 (2016).CrossRefGoogle Scholar
  4. 4.
    W. H. Kim, B. H. Jung, I. D. Park, M. H. Oh, S. W. Choi, and D. M. Kang, Trans. Mater. Process. 24, 272 (2015).CrossRefGoogle Scholar
  5. 5.
    J. Leunda, C. Soriano, C. Sanz, and V. García Navas, Physcs. Proc. 12, 345 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Pleterski, T. Muhic, B. Podgornik, and J. Tušek, Eng. Fail. Anal. 18, 1527 (2011).CrossRefGoogle Scholar
  7. 7.
    P. Kattire, S. Paul, R. Singh, and W. Yan, J. Manuf. Process. 20, 492 (2015).CrossRefGoogle Scholar
  8. 8.
    K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, and K. Ono, Metal. Mater. Trans. A 35, 1289 (2004).CrossRefGoogle Scholar
  9. 9.
    S. H. Wang, J. Y. Chen, and L. Xue, Surf. Coat. Tech. 200, 3446 (2006).CrossRefGoogle Scholar
  10. 10.
    P. Farahmand and R. Kovacevic, Opt. Laser Technol. 63, 154 (2014).CrossRefGoogle Scholar
  11. 11.
    H. A. Aglan, S. Ahmed, K. R. Prayakarao, and M. Fateh, Engineering 5, 837 (2013).CrossRefGoogle Scholar
  12. 12.
    F. Wang, H. Mao, D. Zhang, X. Zhao, and Y. Shen, Appl. Surf. Sci. 255, 3267 (2008).CrossRefGoogle Scholar
  13. 13.
    M. J. Lee, K. M. Cho, and N. H. Kang, Korean J. Met. Mater 54, 252 (2016).CrossRefGoogle Scholar
  14. 14.
    V. Fallah, M. Alimardani, S. F. Corbin, and A. Khajepour, App. Surf. Sci. 257, 1716 (2010).CrossRefGoogle Scholar
  15. 15.
    K. Zhang, S. Wang, W. Liu, and R. Long, Appl. Surf. Sci. 317, 839 (2014).CrossRefGoogle Scholar
  16. 16.
    I. A. Roberts, C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors, Int. J. Mach. Tool. Manu. 49, 916 (2009).CrossRefGoogle Scholar
  17. 17.
    D. Das, R. Sarkar, A. K. Dutta, and K. K. Ray, Mat. Sci. Eng. A, 528, 589 (2010).CrossRefGoogle Scholar
  18. 18.
    N. S. Myers and D. F. Heaney, Handbook of Metal Injection Molding, 20th ed., pp. 516–525, Oxford Cambridge Philadelphia New delhi, UK (2012).CrossRefGoogle Scholar
  19. 19.
    H. Torkamani, Sh. Raygan, and J. Rassizadehghani, Mater. Design 54, 1049 (2014).CrossRefGoogle Scholar
  20. 20.
    K. J. Hong, J. H. Song, I. S. Chung, J. Korean Soc. Heat Treat. 24, 262–270 (2011).Google Scholar
  21. 21.
    H. K. D. H. Bhadeshia and R. W. K. Honeycombe, Steels Microstructure and Properties, 3rd ed., pp. 39–45, Butterworth-Heinemann, London (2005).Google Scholar
  22. 22.
    C. M. Lee, H. K. Park, and C. H. Lee, J. Weld. Joining 32, 41 (2014).CrossRefGoogle Scholar
  23. 23.
    G. A. Fontalvo, R. Humer, C. Mitterer, K. Sammt, and I. Schemmel, Wear 260, 1028 (2006).CrossRefGoogle Scholar
  24. 24.
    M. Durand-Charre, Microstructure of Steels and Cast Irons, pp. 302–304, Springer, Berlin, Germany (2004).CrossRefGoogle Scholar
  25. 25.
    A. Medvedeva, J. Bergström, S. Gunnarsson, and J. Andersson, Mat. Sci. Eng. A 523, 39 (2009).CrossRefGoogle Scholar
  26. 26.
    D. Delagnes, P. Lamesle, M. H. Mathon, N. Mebarki, and C. Levaillant, Mat. Sci. Eng. A 394, (2005).Google Scholar
  27. 27.
    K. Zhang, S. Wang, W. Liu, and R. Long, Appl. Surf. Sci. 317, 839 (2014).CrossRefGoogle Scholar
  28. 28.
    H. R. Akramifard, H. Mirzadeh, and M. H. Parsa, Mater. Design 64, 307, (2014).CrossRefGoogle Scholar
  29. 29.
    K. H. Kang and J. D. Kim, J. Korean Soc. Precis. Eng. 28, 738 (2011).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Green Manufacturing Process GroupKITECHGwangjuRepublic of Korea
  3. 3.Department of Mechanical EngineeringPusan National UniversityBusanRepublic of Korea
  4. 4.Division of Mechanical EngineeringKorea Maritime and Ocean UniversityBusanRepublic of Korea

Personalised recommendations