Advertisement

Metals and Materials International

, Volume 24, Issue 1, pp 121–129 | Cite as

Changes in the state of heat-resistant steel induced by repeated hot deformation

  • Lyudmila L. Lyubimova
  • Roman N. Fisenko
  • Alexander A. Tashlykov
  • Roman B. Tabakaev
Article

Abstract

This work deals with the problems of structural regeneration by thermal restoration treatment (TRT). These include the lack of a structural sign showing that TRT is possible, a consensus on TRT modes, the data on the necessary relaxation depth of residual stresses, or criteria of structural restoration. Performing a TRT without solving these problems may deteriorate the properties of steel or even accelerate its destruction. With this in view, the purpose of this work is to determine experimentally how the residual stress state changes under thermal and mechanical loads in order to specify the signs of the restoration of structure and structural stability. The object of this research is unused 12Cr1MoV steel that has been aged naturally for 13 years. Using X-ray dosimetry with X-ray spectral analysis, we study the distribution of internal residual stresses of the first kind during the repeated hot deformation. After repeated thermal deformation, the sample under study transforms from a viscoelastic Maxwell material into a Kelvin-Voigt material, which facilitates structural stabilization. A sign of this is the relaxation limit increase, prevention of continuous decay of an α-solid solution of iron and restoration of the lattice parameter.

Keywords

metals X-ray diffraction deformation unit cell parameter residual stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yang, Y. Chen, K. Sridharan, and T. R. Allen, Metall. Mater. Trans. A 41, 1441 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Chaudhuri, Mat. Sci. Eng. A 432, 90 (2006).CrossRefGoogle Scholar
  3. 3.
    J. S. Lee, H. Ghassemi Armaki, K. Maruyama, T. Muraki, and H. Asahi, Mat. Sci. Eng. A 428, 270 (2006).CrossRefGoogle Scholar
  4. 4.
    R. W. Swindeman, M. L. Santella, P. J. Maziasz, B. W. Roberts, and K. Coleman, Press. Vessel. Pip. 81, 507 (2004).CrossRefGoogle Scholar
  5. 5.
    D. French, Metallurgical Failures in Fossil Fired Boilers, 2nd ed., p. 528, John Wiley & Sons, New York, USA (1993).Google Scholar
  6. 6.
    G. E. Totten, Steel Heat Treatment: Metallurgy and Technologies, 2nd ed., p. 1077, CRC Press, New York, USA (2006).Google Scholar
  7. 7.
    D. V. Edmonds, K. He, F. C. Rizzo, B. C. De Cooman, D. K. Matlock, and J. G. Speer, Mat. Sci. Eng. A 438-440, 25 (2006).CrossRefGoogle Scholar
  8. 8.
    O. N. Tanicheva, Met. Sci. Heat Treat. 33, 421 (1991).CrossRefGoogle Scholar
  9. 9.
    K.-E. Thelning, Steel and Its Heat Treatment: Bofors Handbook, 2nd ed., p. 696, Butterworth and Co., London, UK (1984).Google Scholar
  10. 10.
    W. Zhang, Y. Feng, W. Chen, and J. Yang, J. Alloy. Compd. 693, 1116 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Eroglu, M. Aksoy, and N. Orhan, Mat. Sci. Eng. A 269, 59 (1999).CrossRefGoogle Scholar
  12. 12.
    J. L. Albarran, L. Martinez, and H. F. Lopez, Corros. Sci. 41, 1037 (1999).CrossRefGoogle Scholar
  13. 13.
    H. Sunada, J. Wadsworth, J. Lin, and O. D. Sherby, Mater. Sci. Eng. 38, 35 (1979).CrossRefGoogle Scholar
  14. 14.
    L. L. Lyubimova, R. N. Fisenko, R. B. Tabakaev, A. A. Tashlykov, and A. S. Zavorin, Mat. Sci. Eng. A 682, 248 (2017).CrossRefGoogle Scholar
  15. 15.
    V. N. Karas, Rosenergoatom 8, 26 (2010) [in Russian].Google Scholar
  16. 16.
    J. Ma and J. Jiang, Prog. Nucl. Energ. 53, 255 (2011).CrossRefGoogle Scholar
  17. 17.
    F. Masuyama, Mater. High Temp. 28, 234 (2011).CrossRefGoogle Scholar
  18. 18.
    A. Dubov and S. Kolokolnikov, Weld. World 54, R241 (2010).CrossRefGoogle Scholar
  19. 19.
    S. Baby, T. Balasubramanian, and R. J. Pardikar, Int. J. Press. Ves. Pip. 80, 139 (2003).CrossRefGoogle Scholar
  20. 20.
    A. F. Bogachev, Therm. Eng. 48, 588 (2001).Google Scholar
  21. 21.
    W. E. Vesely, Reliab. Eng. Syst. Safe 32, 315 (1991).CrossRefGoogle Scholar
  22. 22.
    R. Reinertsen, Reliab. Eng. Syst. Safe 54, 23 (1996).CrossRefGoogle Scholar
  23. 23.
    R. M. Mitrovic, D. B. Momcilovic, O. A. Eric, I. D. Atanasovska, and N. T. Hut, Thermal Sci. 16, 513 (2012).CrossRefGoogle Scholar
  24. 24.
    A. Z. Issagulov, S. V. Kvon, V. Y. Kulikov, and N. B. Aitbayev, Metalurgija 55, 388 (2016).Google Scholar
  25. 25.
    Y. Ivanova, T. Partalin, and B. Tabakova, Russ. J. Nondestruct. 47, 57 (2011).CrossRefGoogle Scholar
  26. 26.
    H. Shokouhmand, B. Ghadimi, and R. Espanani, Eng. Fail. Anal. 50, 20 (2015).CrossRefGoogle Scholar
  27. 27.
    V. F. Rezinskikh, B. E. Shkol'nikova, and G. A. Urusova, Therm. Eng. 47, 899 (2000).Google Scholar
  28. 28.
    I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, 3 rd ed., p. 528, John Wiley & Sons, New York, USA (1995).Google Scholar
  29. 29.
    A. A. Makeev, L. L. Lyubimova, A. S. Zavorin, and A. A. Tashlykov, Steel Transl. 39, 1048 (2009).CrossRefGoogle Scholar
  30. 30.
    J. Friedel, B. D. Cullity, and C. Crussard, Acta Meter. 1, 79 (1953).CrossRefGoogle Scholar
  31. 31.
    G. Parkus, Neustanovivshiesja Temperaturnye Naprjazhenija [Transient thermal stresses], p. 252, State Publishing House of Physical and Mathematical Literature, Moscow, Russia (1963).Google Scholar
  32. 32.
    R. M. Christensen, Theory of Viscoelasticity: An Introduction, 2nd ed., p. 364, Academic press, New York, USA (1982).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Lyudmila L. Lyubimova
    • 1
  • Roman N. Fisenko
    • 1
  • Alexander A. Tashlykov
    • 1
  • Roman B. Tabakaev
    • 1
  1. 1.School of Energy & Power EngineeringNational Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations