Advertisement

Metals and Materials International

, Volume 23, Issue 4, pp 699–707 | Cite as

Improving significantly the failure strain and work hardening response of LPSO-strengthened Mg-Y-Zn-Al alloy via hot extrusion speed control

  • Xinghe Tan
  • Winston Chee
  • Jimmy Chan
  • Richard Kwok
  • Manoj Gupta
Article
  • 114 Downloads

Abstract

The effect of hot extrusion speed on the microstructure and mechanical properties of MgY1.06Zn0.76Al0.42 (at%) alloy strengthened by the novel long-period stacking ordered (LPSO) phase was systematically investigated. Increase in the speed of extrusion accelerated dynamic recrystallization of α-Mg via particle-stimulated nucleation and grain growth in the alloy. The intensive recrystallization and grain growth events weakened the conventional basal texture and Hall-Petch strengthening in the alloy which led to significant improvement in its failure strain from 4.9% to 19.6%. The critical strengthening contribution from LPSO phase known for attributing high strength to the alloy was observed to be greatly undermined by the parallel competition from texture weakening and the adverse Hall-Petch effect when the alloy was extruded at higher speed. Absence of work hardening interestingly observed in the alloy extruded at lower speed was discussed in terms of its ultra-fine grained microstructure which promoted the condition of steady-state defect density in the alloy; where dislocation annihilation balances out the generation of new dislocations during plastic deformation. One approach to improve work hardening response of the alloy to prevent unstable deformation and abrupt failure in service is to increase the grain diameter in the alloy by judiciously increasing the extrusion speed.

Keywords

Mg-Y-Zn alloy LPSO phase dynamic recrystallization texture mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SAE Standard AIR 6160, Magnesium Alloys in Aircraft Seats-Developments in Magnesium Alloy Flammability Testing, SAE International, USA (2014).Google Scholar
  2. 2.
    SAE Standard AS8049B, Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft, SAE International, USA (2005).Google Scholar
  3. 3.
    FAA, Oil Burner Flammability Test for Magnesium Alloy Seat Structure, https://www.fire.tc.faa.gov/pdf/handbook/00-12_ch25.pdf (accessed June 14, 2016).Google Scholar
  4. 4.
    F. Czerwinski, Corros. Sci. 86, 1 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Stachel, Light Weight Alloys in Seat Design, Influence of Magnesium in Seats, https://www.fire.tc.faa.gov/2010Conference/files/Magnesium_Use_In_Aircraft/StachelSeatDesigns/StachelSeatDesignPres. pdf (accessed June 14, 2016).Google Scholar
  6. 6.
    T. XingHe, W. C. K. How, J. C. K. Weng, R. K. W. Onn, and M. Gupta, Mater. Design 83, 443 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Kim and Y. Kawamura, Mat. Sci. Eng. A 573, 62 (2013).CrossRefGoogle Scholar
  8. 8.
    F. Lu, A. Ma, J. Jiang, D. Yang, and Q. Zhou, Rare Metals 31, 303 (2012).CrossRefGoogle Scholar
  9. 9.
    Y. Kawamura and M. Yamasaki, Mater. T. JIM 48, 2986 (2007).CrossRefGoogle Scholar
  10. 10.
    S. Yoshimoto, M. Yamasaki, and Y. Kawamura, Mater. T. JIM 47, 959 (2006).CrossRefGoogle Scholar
  11. 11.
    M. Hirano, M. Yamasaki, K. Hagihara, K. Higashida, and Y. Kawamura, Mater. T. JIM 51, 1640 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. M. Zhu, A. J. Morton, and J. F. Nie, Acta Mater. 58, 2936 (2010).CrossRefGoogle Scholar
  13. 13.
    E. Oñorbe, G. Garcés, P. Pérez, and P. Adeva, J. Mater. Sci. 47, 1085 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Gröbner, A. Kozlov, X.-Y. Fang, J. Geng, J. Nie, and R. Schmid-Fetzer, Acta Mater. 60, 5948 (2012).CrossRefGoogle Scholar
  15. 15.
    X. Tan, K. H. W. Chee, K. W. J. Chan, W. O. R. Kwok, and M. Gupta, Mat. Sci. Eng. A 644, 405 (2015).CrossRefGoogle Scholar
  16. 16.
    X. Tan, W. K. H. Chee, J. K. W. Chan, R. W. O. Kwok, and M. Gupta, J. Mater. Sci. 51, 4160 (2016).CrossRefGoogle Scholar
  17. 17.
    E. Ball and P. Prangnell, Scripta Metall. Mater. 31, 111 (1994).CrossRefGoogle Scholar
  18. 18.
    L. B. Tong, X. H. Li, and H. J. Zhang, Mat. Sci. Eng. A 563, 177 (2013).CrossRefGoogle Scholar
  19. 19.
    H. Liu, J. Bai, K. Yan, J. Yan, A. Ma, and J. Jiang, Mater. Design 93, 9 (2016).CrossRefGoogle Scholar
  20. 20.
    R. Li, J. Nie, G. Huang, Y. Xin, and Q. Liu, Scripta Mater. 64, 950 (2011).CrossRefGoogle Scholar
  21. 21.
    L. Tong, X. Li, D. Zhang, L. Cheng, J. Meng, and H. Zhang, Mater. Charact. 92, 77 (2014).CrossRefGoogle Scholar
  22. 22.
    G. K. Meenashisundaram and M. Gupta, Mat. Sci. Eng. A 627, 306 (2015).CrossRefGoogle Scholar
  23. 23.
    M. K. Habibi, S. P. Joshi, and M. Gupta, Acta Mater. 58, 6104 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Wang, P. Song, S. Huang, and F. Pan, Mater. Lett. 93, 415 (2013).CrossRefGoogle Scholar
  25. 25.
    E. Oñorbe, G. Garcés, F. Dobes, P. Pérez, and P. Adeva, Metall. Mater. Trans. A 44, 2869 (2013).CrossRefGoogle Scholar
  26. 26.
    É._F. Prados, V. L. Sordi, and M. Ferrante, Mat. Res. 11, 199 (2008).CrossRefGoogle Scholar
  27. 27.
    Y. Wang and E. Ma, Mat. Sci. Eng. A 375, 46 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Xinghe Tan
    • 1
    • 2
  • Winston Chee
    • 1
  • Jimmy Chan
    • 1
  • Richard Kwok
    • 1
  • Manoj Gupta
    • 2
  1. 1.Chief Technology OfficeSingapore Technologies Kinetics Ltd (ST Kinetics)SingaporeSingapore
  2. 2.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations