Metals and Materials International

, Volume 23, Issue 5, pp 900–914 | Cite as

Microstructure characterization and charpy toughness of P91 weldment for as-welded, post-weld heat treatment and normalizing & tempering heat treatment

  • Chandan PandeyEmail author
  • M. M. Mahapatra
  • Pradeep Kumar
  • A. Giri


The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.


microstructure toughness scanning electron microscopy (SEM) hardness test welding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. T. Paul, S. Saroja, and M. Vijayalakshm, J. Nucl. Mater. 378, 273 (2008).CrossRefGoogle Scholar
  2. 2.
    B. S. Dutt, M. N. Babu, G. Shanthi, S. Venugopal, G. Sasikala, and A. K. Bhaduri, J. Nucl. Mater. 421, 15 (2012).CrossRefGoogle Scholar
  3. 3.
    T. Shrestha, M. Basirat, I. Charit, G. P. Potirniche, K. K. Rink, and U. Sahaym, J. Nucl. Mater. 423, 110 (2012).CrossRefGoogle Scholar
  4. 4.
    C. Pandey, A. Giri, and M. M. Mahapatra, Mat. Sci. Eng. A 664, 58 (2016).CrossRefGoogle Scholar
  5. 5.
    P. K. Parida, A. Gupta, and S. Saibaba, J. Nucl. Mater. 432, 450 (2013).CrossRefGoogle Scholar
  6. 6.
    M. E. Angiolini, G. Aiello, P. Matheron, L. Pilloni, and G. M. Giannuzzi, J. Nucl. Mater. 472, 215 (2016).CrossRefGoogle Scholar
  7. 7.
    C. Pandey and M. M. Mahapatara, J. Mater. Eng. Perform. 25, 2195 (2016).CrossRefGoogle Scholar
  8. 8.
    B. Silwal, L. Li, A. Deceuster, and B. Griffiths, Weld. J. 91, 80 (2013).Google Scholar
  9. 9.
    T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe, Int. J. Pres. Ves. Pip. 83, 63 (2006).CrossRefGoogle Scholar
  10. 10.
    B. Arivazhagan, S. Sundaresan, and M. Kamaraj, J. Mater. Process. Tech. 209, 524 (2009).CrossRefGoogle Scholar
  11. 11.
    C. Pandey, N. Saini, M. M. Mahapatra, and P. Kumar, Int. J. Hydrogen Energ. 41, 17695 (2016).CrossRefGoogle Scholar
  12. 12.
    C. Pandey and M. M. Mahapatra, J. Mater. Eng. Perform. 25, 2761 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Spigrarelli and E. Quadrini, Mater. Design 23, 547 (2002).CrossRefGoogle Scholar
  14. 14.
    M. E. Abd El-Azim, O. E. El-Desoky, H. Ruoff, F. Kauffmann, and E. Ross, Mater. Sci. Tech. 29, 1027 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Abd El-Rahman Abd El-Salam, I. El-Mahallawi, and M. R. El-Koussy, Int. Heat Treatment Surface Eng. 7, 32 (2013).CrossRefGoogle Scholar
  16. 16.
    G. C. Bodine, C. Chakravarti, C. M. Owens, B. W. Roberts, D. M. Vandergriff, and C. T. Ward, ORNL/Sub-4291/1, TRMCD-015, Oak Ridge National Laboratory, USA (1977).Google Scholar
  17. 17.
    M. L. Santella, R. W. Swindeman, R. W. Reed, and J. M. Tanzosh, Martensite Formation in 9 Cr-1 Mo Steel Weld Metal and Its Effect on Creep Behavior, (accessed June 23, 2017).Google Scholar
  18. 18.
    W. F. Newell, Weld J. 89, 33 (2001).Google Scholar
  19. 19.
    M. L. Santella, R. W. Swindeman, R. W. Reed, and J. M. Tanzosh, Proc. 6th Int. Conf. on:Trends in Welding Research, pp.713–718, ASM International. EPRI, USA (2002).Google Scholar
  20. 20.
    M. Sireesha, S. Sundaresan, and S. K. Albert, J. Mater. Eng. Perform. 10, 320 (2001).CrossRefGoogle Scholar
  21. 21.
    C. Pandey, A. Giri, M. M. Mahapatra, and P. Kumar, Met. Mater. Int. 23, 148 (2017).CrossRefGoogle Scholar
  22. 22.
    C. Pandey, A. Giri, and M. M. Mahapatra, Mat. Sci. Eng. A 657, 173 (2016).CrossRefGoogle Scholar
  23. 23.
    C. Pandey and M. M. Mahapatra, P. I. Mech. E, DOI: 10.1177/0954408916656678 (2016).Google Scholar
  24. 24.
    Y. Wang, R. Kannan, and L. Li, Mater. Charact. 118, 225 (2016).CrossRefGoogle Scholar
  25. 25.
    P. Mayr and H. Cerjak, T. Indian I. Metals 63, 131 (2010).CrossRefGoogle Scholar
  26. 26.
    D. A. Porter and K. E. Esterling, Introduction to the Physical Metallurgy of Welding, 2ed., pp.1–11, Chapmanand Hall, London, UK (1991).Google Scholar
  27. 27.
    T. Kojima, K. Hayashi, and Y. Kajita, ISIJ Int. 35, 1284 (1995).CrossRefGoogle Scholar
  28. 28.
    C. Pandey and M. M. Mahapatra, T. Indian I. Metals 69, 1657 (2016).Google Scholar
  29. 29.
    C. Pandey, M. M. Mahapatra, P. Kumar, and N. Saini, Mat. Sci. Eng. A 685, 39 (2017).CrossRefGoogle Scholar
  30. 30.
    B. Arivazhagan and B. kamraj, A Study on Influence of d- Ferrite Phase on Toughness of P91 Steel Welds, (accessed July, 14, 2017).Google Scholar
  31. 31.
    Y. Silwal, L. Li, A. Deceuster, and B. Griffiths, Weld. J. 92, 80 (2013).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Chandan Pandey
    • 1
    Email author
  • M. M. Mahapatra
    • 2
  • Pradeep Kumar
    • 1
  • A. Giri
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringIndian Institute of Technology RoorkeeUttrakhandIndia
  2. 2.School of Mechanical SciencesIndian Institute of Technology BhubaneswarOdishaIndia

Personalised recommendations