Advertisement

Metals and Materials International

, Volume 23, Issue 6, pp 1063–1074 | Cite as

Stability of Y-Ti-O nanoparticles during laser deposition of oxide dispersion strengthened steel powder

  • Kwangjun Euh
  • Barton Arkhurst
  • Il Hyun Kim
  • Hyun-Gil Kim
  • Jeoung Han Kim
Research Paper

Abstract

This study investigated the feasibility of a direct energy deposition process for fabrication of oxide dispersion strengthened steel cladding. The effect of the laser working power and scan speed on the microstructural stability of oxide nanoparticles in the deposition layer was examined. Y-Ti-O type oxide nanoparticles with a mean diameter of 45 nm were successfully dispersed by the laser deposition process. The laser working power significantly affected nanoparticle size and number density. A high laser power with a low scan speed seriously induced particle coarsening and agglomeration. Compared with bulk oxide dispersion strengthened steel, the hardness of the laser deposition layer was much lower because of a relatively coarse particle and grain size. Formation mechanism of nanoparticles during laser deposition was discussed.

Keywords

alloys oxide dispersion strengthened steel powder processing microstructure scanning/transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Boulnat, M. Perez, D. Fabrègue, S. Cazottes, and Y. De Carlan, Acta Mater. 107, 390 (2016).CrossRefGoogle Scholar
  2. 2.
    I. Hilger, F. Bergner, A. Ulbricht, A. Wagner, T. Weißgärber, B. Kieback, et al. J. Alloy. Compd. 685, 927 (2016).CrossRefGoogle Scholar
  3. 3.
    L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Acta Mater. 91, 340 (2015).CrossRefGoogle Scholar
  4. 4.
    T. K. Kim, G. E. Kim, Y. Do Kim, and S. Noh, Korean J. Met. Mater. 54, 533 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Ohnuma, J. Suzuki, S. Ohtsuka, S. W. Kim, T. Kaito, M. Inoue, et al. Acta Mater. 57, 5571 (2009).CrossRefGoogle Scholar
  6. 6.
    T. S. Byun, J. H. Yoon, D. T. Hoelzer, Y. B. Lee, S. H. Kang, and S. A. Maloy, J. Nucl. Mater. 449, 290 (2014).CrossRefGoogle Scholar
  7. 7.
    J. H. Kim, J.-B. Seol, and K. M. Kim, Korean J. Met. Mater. 54, 171 (2016).CrossRefGoogle Scholar
  8. 8.
    J. H. Kim, T. S. Byun, E. Shin, J. B. Seol, S. Young, and N. S. Reddy, J. Alloy. Compd. 651, 363 (2015).CrossRefGoogle Scholar
  9. 9.
    T. K. Kim, J.-E. Choi, S.-I. Hong, B. K. Choi, S. Noh, and G. E. Kim, Korean J. Met. Mater. 53, 529 (2015).CrossRefGoogle Scholar
  10. 10.
    T. Liu, L. Wang, C. Wang, H. Shen, and H. Zhang, Mater. Design 88, 862 (2015).CrossRefGoogle Scholar
  11. 11.
    A. J. London, S. Santra, S. Amirthapandian, B. K. Panigrahi, R. M. Sarguna, S. Balaji, et al. Acta Mater. 97, 223 (2015).CrossRefGoogle Scholar
  12. 12.
    X. Mao, K. H. Oh, S. H. Kang, T. K. Kim, and J. Jang, Acta Mater. 89, 141 (2015).CrossRefGoogle Scholar
  13. 13.
    R. M. Hunt, K. J. Kramer, and B. El-Dasher, J. Nucl. Mater. 464, 80 (2015).CrossRefGoogle Scholar
  14. 14.
    J. S. Park, M.-G. Lee, Y.-J. Cho, J. H. Sung, M.-S. Jeong, D. H. Kim, et al. Met. Mater. Int. 22, 143 (2016).CrossRefGoogle Scholar
  15. 15.
    J. C. Walker, K. M. Berggreen, A. R. Jones, and C. J. Sutcliffe, Adv. Eng. Mater. 11, 541 (2009).CrossRefGoogle Scholar
  16. 16.
    T. Boegelein, E. Louvis, K. Dawson, G. J. Tatlock, and A. R. Jones, Mater. Charact. 112, 30 (2016).CrossRefGoogle Scholar
  17. 17.
    T. Boegelein, S. N. Dryepondt, A. Pandey, K. Dawson, and G. J. Tatlock, Acta Mater. 87, 201 (2015).CrossRefGoogle Scholar
  18. 18.
    S. M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, Addit. Manuf. 8, 36 (2015).CrossRefGoogle Scholar
  19. 19.
    L. E. Murr, E. Martinez, K. N. Amato, S. M. Gaytan, J. Hernandez, D. A. Ramirez, et al. J. Mater. Res. Technol. 1, 42 (2012).CrossRefGoogle Scholar
  20. 20.
    N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, Addit. Manuf. 8, 12 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Kim, I. Kim, Y. Jung, D. Park, J. Park, and Y. Koo, Nucl. Eng. Technol. 46, 521 (2014).CrossRefGoogle Scholar
  22. 22.
    J. H. Schneibel, C. T. Liu, M. K. Miller, M. J. Mills, P. Sarosi, M. Heilmaier, et al. Scripta Mater. 61, 793 (2009).CrossRefGoogle Scholar
  23. 23.
    S. Noh, B. K. Choi, S. H. Kang, and T. K. Kim, Nucl. Eng. Technol. 46, 857 (2014).CrossRefGoogle Scholar
  24. 24.
    A. Hirata, T. Fujita, C. T. Liu, and M. W. Chen, Acta Mater. 60, 5686 (2012).CrossRefGoogle Scholar
  25. 25.
    H. J. Chang, H. Y. Cho, and J. H. Kim, J. Alloy. Compd. 653, 528 (2015).CrossRefGoogle Scholar
  26. 26.
    S. Liang, Y. Lei, and Q. Zhu, J. Nucl. Mater. 456, 206 (2015).CrossRefGoogle Scholar
  27. 27.
    L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, Acta Mater. 60, 935 (2012).CrossRefGoogle Scholar
  28. 28.
    D. H. Kim, Y. H. Lee, and J. H. Kim, Korean J. Met. Mater. 667, 311 (2016).Google Scholar
  29. 29.
    F. Bergner, I. Hilger, J. Virta, J. Lagerbom, G. Gerbeth, S. Connolly, et al. Metall. Mater. Trans. A 47, 5313 (2016).CrossRefGoogle Scholar
  30. 30.
    M. Nagini, R. Vijay, M. Ramakrishna, A. V. Reddy, and G. Sundararajan, Mat. Sci. Eng. A 620, 490 (2014).CrossRefGoogle Scholar
  31. 31.
    K. D. Zilnyk, H. R. Z. Sandim, R. E. Bolmaro, R. Lindau, A. Möslang, A. Kostka, et al. J. Nucl. Mater. 448, 33 (2014).CrossRefGoogle Scholar
  32. 32.
    K. Verhiest, S. Mullens, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, et al. Ceram. Int. 40, 14319 (2014).CrossRefGoogle Scholar
  33. 33.
    E. A. Jägle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit, et al. JOM 68, 943 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Kwangjun Euh
    • 1
    • 4
  • Barton Arkhurst
    • 2
  • Il Hyun Kim
    • 3
  • Hyun-Gil Kim
    • 3
  • Jeoung Han Kim
    • 2
  1. 1.Light Metals DepartmentKorea Institute of Materials ScienceChangwonRepublic of Korea
  2. 2.Department of Materials Science & EngineeringHanbat National UniversityDaejeonRepublic of Korea
  3. 3.LWR Fuel Technology DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  4. 4.Advanced materials engineeringKorea University of Science and Technology (UST)DaejeonRepublic of Korea

Personalised recommendations