Metals and Materials International

, Volume 23, Issue 4, pp 660–672 | Cite as

Constitutive modeling and understanding of the hot compressive deformation of Mg–9.5Zn–2.0Y magnesium alloy with reduced number of strain-dependent constitutive parameters

  • Woo Jin Kim
  • Tae Yang Kwak


The hot compressive flow behavior of the cast Mg–9.5Zn–2.0Y alloy as a function of strain was analyzed, and the degree of dependence of the parameters (A: material constant, n 2: stress exponent, Q c: activation energy for plastic flow and α: stress multiplier) of the constitutive equation (\(\dot \varepsilon = A{\left[ {\sinh \left( {\alpha \sigma } \right)} \right]^{{n_2}}}\exp \left( {\frac{{ - {Q_c}}}{{RT}}} \right)\)) upon the strain was examined in a systematic manner. This is to explore the possibility of representing the hot compressive deformation behavior of metallic alloys in a simple way by using a reduced number of strain-dependent constitutive parameters. The analysis results for several different cases can be interpreted as follows: (1) Q c can be treated as being strain-independent, which is physically sensible; (2) while only the microstructure changes as a function of strain at low flow stresses, as the flow stress increases, the power-law creep deformation and power-law breakdown mechanisms change; (3) the regime where only A is strain dependent expanded to higher strain rates and lower temperatures as the strain increased, suggesting that the number of the strain-dependent parameters decreases as the initial microstructure is refined by dynamic recrystallization, and the microstructure approaches a steady state.


alloys casting mechanical properties constitutive modeling compression test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. D. Sherby, R. H. Klundt, and A. K. Miller, Metall. Trans. A 8, 843 (1977).CrossRefGoogle Scholar
  2. 2.
    O. D. Sherby and P. M. Burke, Prog. Mater. Sci. 13, 323 (1968).CrossRefGoogle Scholar
  3. 3.
    C. M. Sellars and W. J. Tegart, Acta Metall. 14, 1136 (1966).CrossRefGoogle Scholar
  4. 4.
    H. Li, X. Wei, J. Ouyang, J. Jiang, and Y. Li, T. Nonferr. Metal. Soc. 23, 3180 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. C. Lin and G. Liu, Mat. Sci. Eng. A 523, 139 (2009).CrossRefGoogle Scholar
  6. 6.
    C. Liao, H. Wu, S. Lee, F. Zhu, H. Liu, and C. Wu, Mat. Sci. Eng. A 565, 1 (2013).CrossRefGoogle Scholar
  7. 7.
    T. Y. Kwak, H. K. Lim, and W. J. Kim, Mat. Sci. Eng. A 648, 146 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Y. Kwak, H. K. Lim, and W. J. Kim, J. Alloy. compd. 632, 417 (2015).CrossRefGoogle Scholar
  9. 9.
    J. W. Zhao, Z. G. Jiang, G. Q. Zu, W. Du, X. Zhang, and L. Z. Jiang, Met. Mater. Int. 22, 474 (2016).CrossRefGoogle Scholar
  10. 10.
    K. S. Choi, J. H. Hwang, K. H. Lee, and K. S. Shin, Korean. J. Met. Mater. 53, 569 (2015).CrossRefGoogle Scholar
  11. 11.
    S. M. Lee, J. W. Lee, H. J. Choi, and S. K. Hyun, Korean. J. Met. Mater. 54, 793 (2016).CrossRefGoogle Scholar
  12. 12.
    N. V. R. Kumar, J. J. Blandin, C. Desrayaud, F. Montheillet, and M. Suéry, Mat. Sci. Eng. A 359, 150 (2003).CrossRefGoogle Scholar
  13. 13.
    J. Cai, F. Li, T. Liu, B. Chen, and M. He, Mater. Design 32, 1144 (2011).CrossRefGoogle Scholar
  14. 14.
    W. Li, H. Li, Z. Wang, and Z. Zheng, Mat. Sci. Eng. A 528, 4098 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Mandal, V. Rakesh, P. V. Sivaprasad, S. Venugopal, and K. V. Kasiviswanathan, Mat. Sci. Eng. A 500, 114 (2009).CrossRefGoogle Scholar
  16. 16.
    H. Y. Li, Y. Liu, X. C. Lu, and X. J. Su, J. Mater. Sci. 47, 5411 (2012).CrossRefGoogle Scholar
  17. 17.
    H. Y. Li, Y. H. Li, D. D. Wei, J. J. Liu, and X. F. Wang, Mat. Sci. Eng. A 530, 367 (2011).CrossRefGoogle Scholar
  18. 18.
    C. Liao, H. Wu, Y. Wu, F. Zhu, and S. Lee, Prog. Nat. Sci. Mater. Int. 24, 253 (2014).CrossRefGoogle Scholar
  19. 19.
    F. A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, J. Mater. Sci. 43, 7165 (2008).CrossRefGoogle Scholar
  20. 20.
    H. Mirzadeh, J. Mag. Alloy. 2, 225 (2014).CrossRefGoogle Scholar
  21. 21.
    H. Mirzadeh, Mech. Mater. 85, 66 (2015).CrossRefGoogle Scholar
  22. 22.
    O. D. Sherby, J. L. Lytton, and J. E. Dorn, Acta Metall. 5, 219 (1957).CrossRefGoogle Scholar
  23. 23.
    K. L. Murty, M. Gold, and A. L. Ruoff, J. Appl. Phys. 41, 4917 (1970).CrossRefGoogle Scholar
  24. 24.
    T. Y. Kwak, H. K. Lim, and W. J. Kim, J. Alloy. compd. 644, 645 (2015).CrossRefGoogle Scholar
  25. 25.
    L.-X. Wang, G. Fang, M. A. Leeflang, J. Duszczyk, and J. Zhou, J. Alloy. compd. 622, 121 (2015).CrossRefGoogle Scholar
  26. 26.
    Z. Cai, F. Chen, F. Ma, and J. Guo, J. Alloy. compd. 670, 55 (2016).CrossRefGoogle Scholar
  27. 27.
    N. Tahreen, D. F. Zhang, F. S. Pan, X. Q. Jiang, C. Li, D. L. Chen, et al. J. Alloy. compd. 644, 814 (2015).CrossRefGoogle Scholar
  28. 28.
    W. X. Wu, L. Jin, J. Dong, and W. Jiang, T. Nonferr. Met. Soc. 22, 1169 (2012).CrossRefGoogle Scholar
  29. 29.
    H. Wu, J. Yang, F. Zhu, and C. Wu, Mat. Sci. Eng. A 574, 17 (2013).CrossRefGoogle Scholar
  30. 30.
    X. Tang, B. Wang, Y. Huo, W. Ma, J. Zhou, H. Ji, et al. Mater. Sci. Eng. A 662, 54 (2016).CrossRefGoogle Scholar
  31. 31.
    H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps, p. 44, Pergamon Press, Oxford, UK (1982).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringHongik UniversitySeoulRepublic of Korea
  2. 2.Advanced Process and Materials R&D GroupKorea Institute of Industrial TechnologyIncheonRepublic of Korea

Personalised recommendations