Advertisement

Metals and Materials International

, Volume 23, Issue 4, pp 625–631 | Cite as

Microstructural control of Ti-Al-Mo-Nb alloy system with respect to variation of B

  • Minseok Kim
  • Kwangsoo Choi
  • Jun Zhu
  • Fan Zhang
  • Youngbuem Song
  • Youngwon Kim
  • Seonghoon YiEmail author
  • Joon Sik ParkEmail author
Article

Abstract

In the current study, phase stability of Ti-Al-Mo-Nb alloys was investigated, and the effect of B addition was examined for cast alloys. The fabricated cast alloys were mainly composed of α2 / γ lamellar with a β phase, when they were heat treated at 1100 °C followed by air cooling, the alloy was composed of α2 / γ lamellar with γ+β necklace phase at the colony boundary for the Ti-45Al-3Mo-2Nb-1B alloy, and the colony size was refined to ~ 20 μm. In order to identify the effect of the microstructures on mechanical strength, compressive tests were performed on the fabricated alloys of Ti-45Al-3Mo-2Nb and Ti-45Al-3Mo-2Nb-1B at room temperature and at 800 °C. The microstructural variations and phase stability were discussed in terms of pseudo-binary phase diagram calculated by Pandat software™.

Keywords

alloys casting microstructure scanning electron microscopy (SEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. Froes, Mater. Design 10, 110 (1989).CrossRefGoogle Scholar
  2. 2.
    D. M. Dimiduk, Mat. Sci. Eng. A 263, 281 (1999).CrossRefGoogle Scholar
  3. 3.
    M. S. Kim, J.-S. Park, Y. I. Son, and J. S. Park, Korean J. Met. Mater. 53, 711 (2015).CrossRefGoogle Scholar
  4. 4.
    Y.-W. Kim, JOM 46, 30 (1994).CrossRefGoogle Scholar
  5. 5.
    B. Tang, L. Cheng, H. Kou, and J. Li, Intermetallics 58, 7 (2015).CrossRefGoogle Scholar
  6. 6.
    K. Kothari, R. Radhakrishnan, and N. M. Wereley, Prog. Aerosp. Sci. 55, 1 (2012).CrossRefGoogle Scholar
  7. 7.
    T. Moskalewicz, M. Kot, S. Seuss, A. Kędzierska, A. C. Filemonowicz, and A. R. Boccaccini, Met. Mater. Int. 21, 96 (2015).CrossRefGoogle Scholar
  8. 8.
    P. Wang and V. K. Vasudevan, Scripta Metall. Mater. 27, 89 (1992).CrossRefGoogle Scholar
  9. 9.
    K. S. Park, D. S. Bae, G. H. Lee, and S. K. Lee, Met. Mater. Int. 11, 481 (2005).CrossRefGoogle Scholar
  10. 10.
    D. R. Johnson, H. Inui, and M. Yamaguchi, Acta Mater. 44, 2523 (1996).CrossRefGoogle Scholar
  11. 11.
    B.-W. Kwak, B.-S. Kim, J.-K. Yoon, K.-T. Hong, and I.-J. Shon, Korean J. Met. Mater. 54, 566 (2016).CrossRefGoogle Scholar
  12. 12.
    J. S. Kim, Y. H. Lee, Y.-W. Kim, and C. S. Lee, Mater. Sci. Forum. 539, 1531 (2007).CrossRefGoogle Scholar
  13. 13.
    Y.-W. Kim, Mat. Sci. Eng. A 192-193, 519 (1995).CrossRefGoogle Scholar
  14. 14.
    Y.-W. Kim and S. L. Kim, Intermetallics 53, 92 (2014).CrossRefGoogle Scholar
  15. 15.
    F. Yang, F. Kong, Y. Chen, and S. Xiao, J. Alloy. Compd. 589, 609 (2014).CrossRefGoogle Scholar
  16. 16.
    Z. C. Liu, J. P. Lin, S. J. Li, and G. L. Chen, Intermetallics 10, 653 (2002).CrossRefGoogle Scholar
  17. 17.
    C. Qiu, Y. Liu, W. Zhang, B. Liu, and X. Liang, Intermetallics 27, 46 (2012).CrossRefGoogle Scholar
  18. 18.
    H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, and A. Bartels, Adv. Eng. Mater. 10, 707 (2008).CrossRefGoogle Scholar
  19. 19.
    D. Hu, X. Wu, and M. H. Loretto, Intermeallics 13, 914 (2005).CrossRefGoogle Scholar
  20. 20.
    L. Song, X. J. Xu, L. You, Y. F. Liang, and J. P. Lin, J. Alloy. Compd. 618, 305 (2015).CrossRefGoogle Scholar
  21. 21.
    I.-J. Shon, H.-G. Jo, B.-S. Kim, J.-K. Yoon, and K.-T. Hong, Korean J. Met. Mater. 53, 474 (2015).CrossRefGoogle Scholar
  22. 22.
    D. R. Johnson, K. Chihara, H. Inui, and M. Yamaguchi, Acta Mater. 46, 6529 (1998).CrossRefGoogle Scholar
  23. 23.
    F. Godor, R. Werner, J. Lindemann, H. Clemens, and S. Mayer, Mat. Sci. Eng. A 648, 208 (2015).CrossRefGoogle Scholar
  24. 24.
    V. Imayev, R. Imayev, T. Khismatullin, V. Güther, W. Beck, and H.-J. Fecht, Scripta Mater. 57, 193 (2007).CrossRefGoogle Scholar
  25. 25.
    T. Schmoelzer, K.-D. Liss, G. A. Zickler, L. J. Watson, L. M. Droessler, W. Wllgram, et al. Intermetallics 18, 1544 (2010).CrossRefGoogle Scholar
  26. 26.
    H. Z. Niu, Y. Y. Chen, S. L. Xiao, and L. J. Xu, Intermetallics 31, 225 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Minseok Kim
    • 1
  • Kwangsoo Choi
    • 1
  • Jun Zhu
    • 2
  • Fan Zhang
    • 2
  • Youngbuem Song
    • 3
  • Youngwon Kim
    • 4
  • Seonghoon Yi
    • 5
    Email author
  • Joon Sik Park
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringHanbat National UniversityDaejeonRepublic of Korea
  2. 2.CompuTerm LCCMiddletonUSA
  3. 3.Agency for Defense DevelopmentDaejeonRepublic of Korea
  4. 4.Gamteck LLCBeavercreekUSA
  5. 5.Department of Materials Science and Metallurgical EngineeringKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations