Advertisement

Metals and Materials International

, Volume 23, Issue 4, pp 708–714 | Cite as

Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube

  • Min-Sung Hong
  • In-Jun Park
  • Jung-Gu Kim
Article

Abstract

This study examined the alloying effect of Cu content on the localized corrosion properties of Al alloy in synthetic acid rain containing 200 ppm of Cl- ion. In aluminum alloy tubes, a small amount of Cu is contained as the additive to improve the mechanical strength or as the impurity. The Cu-containing intermetallic compound, Al2Cu can cause galvanic corrosion because it has more noble potential than Al matrix. Therefore aluminum tube could be penetrated by localized corrosion attack. The results were obtained from electrochemical test, scanning electron microscopy, and time of flight secondary ion mass spectrometry (ToF-SIMS) mapping. Severe localized corrosion was occurred on the Al-0.03 wt% Cu alloy. The negative effect of Cu on the pitting corrosion was attributed to the presence of the Al2Cu precipitates.

Keywords

alloys intermetallics corrosion electrochemistry secondary ion mass spectroscopy (SIMS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. M. Adams, M. F. Dowling, S. I. Abdel-Khalik, and S. M. Jeter, Int. J. Heat Mass Tran. 42, 4411 (1999).CrossRefGoogle Scholar
  2. 2.
    W. W. Akers, H. A. Deans, and O. K. Crosser, Chem. Eng. Prog. S. Ser. 55, 171 (1959).Google Scholar
  3. 3.
    W. W. Akers and H. F. Rosson, Chem. Eng. Prog. S. Ser. 56, 145 (1960).Google Scholar
  4. 4.
    A. Cavallini, D. D. Col, L. Doretti, M. Matkovic, L. Rossetto, and C. Zilio, Heat Transfer Eng. 26, 45 (2005).CrossRefGoogle Scholar
  5. 5.
    T. M. Adams, S. I. Abdel-Khalik, S. M. Jeter, and Z. H. Qureshi, Int. J. Heat Mass Tran. 41, 851 (1998).CrossRefGoogle Scholar
  6. 6.
    S. B. Choi, R. F. Barron, and R. O. Warrington, ASME DSC. 32, 123 (1991).Google Scholar
  7. 7.
    G. P. Celata, M. Cumo, V. Marconi, S. J. McPhail, and G. Zummo, Int. J. Heat Mass Tran. 49, 3538 (2006).CrossRefGoogle Scholar
  8. 8.
    P. Fernando, B. Palm, T. Ameel, P. Lundqvist, and E. Granryd, Int. J. Refrig. 31, 669 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Abdulstaar, M. Mhaede, L. Wagner, and M. Wollmann, Mater. Design 57, 325 (2014).CrossRefGoogle Scholar
  10. 10.
    G. Chen, Q. Chen, B. Wang, and Z. Du, Met. Mater. Int. 21, 897 (2015).CrossRefGoogle Scholar
  11. 11.
    M. J. Kim, G. Y. Kim, K. J. Euh, Y. M. Rhyim, and K. A. Lee, Korean J. Met. Mater. 53, 169 (2015).CrossRefGoogle Scholar
  12. 12.
    D. H. Koh, Y. S. Lee, M. S. Kim, H. W. Kim, and Y. S. Ahn, Korean J. Met. Mater. 54, 483 (2016).CrossRefGoogle Scholar
  13. 13.
    R. A. Woods, A. C. Scott, and J. F. Harris, A Corrosion Resistant Alloy for Vacuum Brazed Aluminum Heat Exchangers, pp. 655–658, Society of Automotive Engineers, USA (1991).Google Scholar
  14. 14.
    M. Hagiwara, Y. Baba, Z. Tanabe, T. Miura, Y. Hasegawa, and K. Iljima, Development of Corrosion Resistant Aluminum Heat Exchanger, Part 1: Development of New Aluminum Alloy Sheets for Sacrificial Anode, pp. 135–137, Society of Automotive Engineers, USA (1986).Google Scholar
  15. 15.
    R. Ambat, A. J. Davenport, G. M. Scamans, and A. Afseth, Corros. Sci. 48, 3455 (2006).CrossRefGoogle Scholar
  16. 16.
    R. Ambat, A. J. Davenport, A. Afseth, and G. Scamans, J. Electrochem. Soc. 151, B53 (2004).CrossRefGoogle Scholar
  17. 17.
    M. Pohl, S. Oliver, and G. Thomas, Mater. Charact. 58, 65 (2007).CrossRefGoogle Scholar
  18. 18.
    G. Wang, Corros. Eng. Sci. Techn. 22, 180 (2010).Google Scholar
  19. 19.
    J. F. Li, Z. Ziqiao, J. Na, and T. Chengyu, Mater. Chem. Phys. 91, 325 (2005).CrossRefGoogle Scholar
  20. 20.
    L. Z. He, P. F. Jia, L. Zhang, and J. Z. Cui, T. Nonferr. Metal. Soc. 11, 231 (2001).Google Scholar
  21. 21.
    I. L. Muller and J. R. Galvele, Corros. Sci. 17, 179 (1977).CrossRefGoogle Scholar
  22. 22.
    C. Vargel, Corrosion of Aluminum, pp. 125–126, Elsevier, London, UK (2004).Google Scholar
  23. 23.
    D. G. Altenpohl, Aluminum: Technology, Applications, and Environment: A Profile of a Modern Metal: Aluminum, 6 nd ed., pp. 360–366, Aluminum Association, Arlington, Virginia, USA (1998).Google Scholar
  24. 24.
    A. Seyeux, G. S. Frankel, N. Missert, K. A. Unocic, L. H. Klein, P. Marcus, et al. J. Electrochem. Soc. 158, C165 (2011).CrossRefGoogle Scholar
  25. 25.
    H. Krawiec, V. Vignal, and Z. szklarz, J. Solid State Electr. 13, 1181 (2009).CrossRefGoogle Scholar
  26. 26.
    S. V. Roberson, A. J. Fahey, A. Sehgal, and A. Karim, Appl. Surf. Sci. 200, 150 (2002).CrossRefGoogle Scholar
  27. 27.
    R. N. S. Sodhi, R. Soc. Chem. Adv. 129, 483 (2004).Google Scholar
  28. 28.
    J. R. Scully, T. O. Knight, R. G. Buchheit, and D. E. Peebles, Corros. Sci. 35, 185 (1993).CrossRefGoogle Scholar
  29. 29.
    V. S. Agarwala and Y. V. Murty, Metallography 10, 451 (1977).CrossRefGoogle Scholar
  30. 30.
    R. P. Wei, C. M. Liao, and G. Ming, Metall. Mater. Trans. A 29, 1153 (1998).CrossRefGoogle Scholar
  31. 31.
    E. G. Colgan and K. P. Rodbell, J. Appl. Phys. 75, 3423 (1994).CrossRefGoogle Scholar
  32. 32.
    M. H. Larsen, J. C. Walmsley, O. Lunder, R. H. Mathiesen, and K. Nisancioglu, J. Electrochem. Soc. 155, C550 (2008).CrossRefGoogle Scholar
  33. 33.
    T. D. Burleigh, E. Ludwiczak, and R. A. Petri, Corrosion 51, 50 (1995).CrossRefGoogle Scholar
  34. 34.
    F. Bentiss, M. Lebrini, H. Vezin, F. Chai, M. Traisnel, and M. Lagrené, Corros. Sci. 51, 2165 (2009).CrossRefGoogle Scholar
  35. 35.
    N. D. Nam and J. G. Kim, Corros. Sci. 52, 3377 (2010).CrossRefGoogle Scholar
  36. 36.
    A. S. Hamdy, A. G. Sa’eh, M. A. Shoeib, and Y. Barakat, Electrochim. Acta 52, 7068 (2007).CrossRefGoogle Scholar
  37. 37.
    P. Q. Zhang, J. X. Wu, W. Q. Zhang, X. Y. Lu, and K. Wang, Corros. Sci. 34, 1343 (1993).CrossRefGoogle Scholar
  38. 38.
    K. Ogle, M. Serdechnova, M. Mokaddem, and P. Volovitch, Electrochim. Acta 56, 1711 (2011).CrossRefGoogle Scholar
  39. 39.
    J. L. Dawson and M. G. S. Ferreira, Corros. Sci. 26, 7068 (1986).Google Scholar
  40. 40.
    P. Q. Zhang, J. X. Wu, W. Q. Zhang, X. Y. Lu, and K. Wang, Corros. Sci. 34, 1351 (1993).Google Scholar
  41. 41.
    A. Spinelli and R. S. Gonçalves, Corros. Sci. 30, 1235 (1990).CrossRefGoogle Scholar
  42. 42.
    A. Broli and H. Holtan, Corros. Sci. 17, 59 (1977).CrossRefGoogle Scholar
  43. 43.
    M. G. Pujar and T. Anita, J. Mater. Eng. Perform. 16, 494 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations