Skip to main content
Log in

Directionality of residual stress evaluated by instrumented indentation testing using wedge indenter

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In instrumented indentation testing (IIT), residual stress can be evaluated by shift in indentation load-depth curves for stress-free and stressed states. Although the average surface residual stress is able to be evaluated with Vickers indenter, in order to know stress directionality, another indentation tests with two-fold symmetric indenter, for example, Knoop indenter, are needed. As some necessities for evaluating nonequibiaxial residual stress within small indent area, we suggest a novel way to evaluate directionality of residual stress, p, using wedge indenter characterized by two parameters, edge length and inclined angle. We develop wedge-indentation-mechanics model based on predetermined conversion factors which are determined by IITs for various uniaxial stressed states combining with finite element analysis simulations. By utilizing the developed model, directionality of residual stress is evaluated through two serial wedge IITs with respect to principal directions. We find good agreements between applied residual stress and residual stress evaluated by the developed model for biaxial tensile stress states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. C. Noyan and J. B. Cohen, Residual Stress, pp. 13–46, Springer-Verlag, New York, USA (1987).

  2. G. Totten, M. Howes, and T. Inoue, Handbook of Residual Stress and Deformation of Steel, pp. 27–53, ASM International, Ohio, USA (1996).

  3. Y.-H. Lee, S. Ahn, J.-Y. Kim, C.-P. Park, and H.-K. Jang, Korean J. Met. Mater. 53, 162 (2015).

    Article  Google Scholar 

  4. Y.-H. Lee, J. S. Park, Y. Kim, and Y.-H. Huh, Korean J. Met. Mater. 53, 90 (2015).

    Article  Google Scholar 

  5. T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 752 (1996).

    Article  Google Scholar 

  6. A. Bolshakov, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 760 (1996).

    Article  Google Scholar 

  7. S. Suresh and A. E. Giannakopoulos, Acta Mater. 46, 5755 (1998).

    Article  Google Scholar 

  8. J. G. Swadener, B. Taljat, and G. M. Pharr, J. Mater. Res. 16, 2091 (2001).

    Article  Google Scholar 

  9. A. E. Giannakopoulos, J. Appl. Mech. 70, 638 (2003).

    Article  Google Scholar 

  10. Y.-H. Lee and D. Kwon, Scripta Mater. 49, 459 (2003).

    Article  Google Scholar 

  11. J.-I. Jang, J. Ceram. Process. Res. 10, 291 (2009).

    Google Scholar 

  12. Y.-H. Lee and D. Kwon, Acta Mater. 52, 1555 (2004).

    Article  Google Scholar 

  13. Y.-H. Lee, K. Takashima, Y. Higo, and D. Kwon, Scripta Mater. 49, 459 (2003).

    Article  Google Scholar 

  14. J.-H. Han, J.-S. Lee, Y.-H. Lee, M.-J. Choi, G. Lee, D. Kwon, et al. Key Eng. Mat. 345-346, 1125 (2007).

    Article  Google Scholar 

  15. M.-J. Choi, S.-K. Kang, I. Kang, and D. Kwon, J. Mater. Res. 27, 1 (2011).

    Article  Google Scholar 

  16. Y.-C. Kim, M.-J. Choi, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 21, 850 (2015).

    Article  Google Scholar 

  17. Y.-C. Kim, H.-J. Ahn, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 22, 12 (2016).

    Article  Google Scholar 

  18. T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 752 (1996).

    Article  Google Scholar 

  19. A. Bolshakov, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 760 (1996).

    Article  Google Scholar 

  20. S. Suresh and A. E. Giannakopoulos, Acta Mater. 46, 5755 (1998).

    Article  Google Scholar 

  21. J. G. Swadener, B. Taljat, and G. M. Pharr, J. Mater. Res. 16, 2091 (2001).

    Article  Google Scholar 

  22. A. E. Giannakopoulos, J. Appl. Mech. 70, 638 (2003).

    Article  Google Scholar 

  23. Y.-H. Lee and D. Kwon, Scripta Mater. 49, 459 (2003).

    Article  Google Scholar 

  24. J.-I. Jang, J. Ceram. Process. Res. 10, 291 (2009).

    Google Scholar 

  25. Y.-H. Lee and D. Kwon, Acta Mater. 52, 1555 (2004).

    Article  Google Scholar 

  26. Y.-H. Lee, K. Takashima, Y. Higo, and D. Kwon, Scripta Mater. 49, 459 (2003).

    Article  Google Scholar 

  27. J.-H. Han, J.-S. Lee, Y.-H. Lee, M.-J. Choi, G. Lee, D. Kwon, et al. Key Eng. Mat. 345-346, 1125 (2007).

    Article  Google Scholar 

  28. M.-J. Choi, S.-K. Kang, I. Kang, and D. Kwon, J. Mater. Res. 27, 1 (2011).

    Article  Google Scholar 

  29. Y.-C. Kim, M.-J. Choi, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 21, 850 (2015).

    Article  Google Scholar 

  30. Y.-C. Kim, H.-J. Ahn, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 22, 12 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Cheon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, HJ., Kim, Jh., Xu, H. et al. Directionality of residual stress evaluated by instrumented indentation testing using wedge indenter. Met. Mater. Int. 23, 465–472 (2017). https://doi.org/10.1007/s12540-017-6573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6573-4

Keywords

Navigation