Metals and Materials International

, Volume 23, Issue 3, pp 532–542 | Cite as

Enhancement of densification and sintering behavior of tungsten material via nano modification and magnetic mixing processed under spark plasma sintering

  • Nguyen Van Minh
  • Yury Konyukhov
  • Gopalu Karunakaran
  • Dmitry Ryzhonkov
  • Tang Duong
  • Sergey Kotov
  • Denis Kuznetsov


In the present study, the influence of nano additives (Ni, Fe) and different mixing (turbular and magnetic) on the densification, microstructure and micro-hardness of the tungsten material under spark plasma sintering is analyzed. After turbulent mixing the nanoparticles are distributed widely in the W interparticle gaps but after magnetic mixing the nanoparticles are distributed not only on the gaps of the W particles but also on the broken surfaces. Ni incorporated tungsten materials achieved the maximum density of 98.3% at 1400 °C (turbular mixing) and 97.9% at 1300 °C (magnetic mixing). Fe incorporated tungsten material showed density of 97.7% at 1600 °C and 97.2% at 1400 °C after turbular and magnetic mixing. The influence of nanoparticles in the densification process was explained by Laplace force, boundary slip and Agte-Vacek effect. The microstructural analysis showed that nano-modification reduced the degree of porosity, and provides a compact material at low temperatures. X-ray fluorescence analysis reveals that magnetic mixing shows more uniform distribution of nanoparticles than turbular mixing. The nanoparticles incorporation increased the micro hardness of tungsten material. Hence, it is clear that magnetic mixing and nano modification greatly improved the densification and sintering behavior of the tungsten material.


nanostructured materials powder processing sintering microstructure hardness test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Lassner and W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, p. 416, Kluwer Academic, New York, USA (1999).CrossRefGoogle Scholar
  2. 2.
    Z. Zhou, Y. Ma, J. Du, and J. Linke, Mat. Sci. Eng. A-Struct. 505, 131 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Mabuchi, K. Okamoto, N. Saito, T. Asahina, and T. Igarashi, Mat. Sci. Eng. A-Struct. 237, 241 (1997).CrossRefGoogle Scholar
  4. 4.
    S. G. Caldwell, Teledyne Metalworking Products. Powder Metallurgy Tungsten Heavy Alloys, p. 921, ASM Handbook Vol. 7, Powder Metal Technologies and Applications (ASM International), Materials Park, USA (1990).Google Scholar
  5. 5.
    V. Piotter, B. Zeep, P. Norajitra, R. Ruprecht, A. von der Weth, and J. Hausselt, Fusion Eng. Des. 83, 1517 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. Kim, M.-H. Hong, S. Lee, E.-P. Kim, S. Lee, and J.-W. Noh, Met. Mater. Int. 12, 245 (2006).CrossRefGoogle Scholar
  7. 7.
    D. M. Karpinos, A. A. Kravchenko, Y. L. Pilipovskii, V. G. Tkachenko, and Y. M. Shamatov, Sov. Powder Metall. 9, 287 (1970).Google Scholar
  8. 8.
    M. A. Monge, M. A. Auger, T. Leguey, Y. Ortega, L. Bolzoni, E. Gordo, et al. J. Nucl. Mater. 386, 613 (2009).CrossRefGoogle Scholar
  9. 9.
    G. Prabhu, A. Chakraborty, B. Sarma, Int. J. Refract. Met. H. 27, 545 (2009).CrossRefGoogle Scholar
  10. 10.
    M. A. Umer, D. Lee, O. A. Waseem, H. J. Ryu, and S. H. Hong, Met. Mater. Int. 22, 493 (2016).CrossRefGoogle Scholar
  11. 11.
    A. N. Zelikman and B. G. Korshunov, Metallurgy of Rare Metals, p. 432, Metallurgy Publisher, Moscow, Russia (1991).Google Scholar
  12. 12.
    L. Ding, D. P. Xiang, Y. Y. Li, C. Li, and J. B. Li, Int. J. Refract. Met. H. 33, 65 (2012).CrossRefGoogle Scholar
  13. 13.
    R. M. German and Z. A. Munir, Rev. Powder Metall. Phys. Ceram. 2, 9 (1982).Google Scholar
  14. 14.
    H. W. Hayden and J. H. Brophy, J. Electrochem. Soc. 110, 805 (1963).CrossRefGoogle Scholar
  15. 15.
    A. G. Hamidi, H. Arabi, and S. Rastegari, Int. J. Refract. Met. H. 29, 538 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Patra, R. Saxena, and S. K. Karak, Int. J. Refract. Met. H. 60, 131 (2016).CrossRefGoogle Scholar
  17. 17.
    A. Mondal, A. Upadhyaya, and D. Agrawal, Int. J. Refract. Met. H. 28, 597 (2010).CrossRefGoogle Scholar
  18. 18.
    I. A. Rutkowska, D. Marks, C. Perruchot, M. Jouini, and P. J. Kulesza, Colloid. Surface. A 439, 200 (2013).CrossRefGoogle Scholar
  19. 19.
    S. S. Kalyan Kamal, P. K. Sahoo, J. Vimala, B. Shanker, P. Ghosal, and L. Durai, J. Alloy. Compd. 678, 403 (2016).CrossRefGoogle Scholar
  20. 20.
    A. A. Rempel, Russ. Chem. Rev. 76, 435 (2007).CrossRefGoogle Scholar
  21. 21.
    H. Wang, Z. Z. Fang, K. S. Hwang, H. Zhang, and D. Siddle, Int. J. Refract. Met. H. 28, 312 (2010).CrossRefGoogle Scholar
  22. 22.
    S. V. Matrenin, A. P. Ilyin, A. I. Slosman, and L. O. Tolbanova, Adv. Mater. 81, 87 (2008).Google Scholar
  23. 23.
    S. V. Matrenin, B. B. Ovechkin, and D. D. Sadilov, Bulletin of Siberian Sci. 1, 149 (2011).Google Scholar
  24. 24.
    S. V. Matrenin, A. P. Ilyin, A. I. Slosman, and L. O. Tolbanova, Bulletin of the Tomsk Polytechnic University 313, 83 (2008).Google Scholar
  25. 25.
    V. M. Nguyen, Y. V. Konyukhov, D. I. Ryzhonkov, and S. I. Kotov, Universities’ Proceedings-Powder Metallurgy ?nd Functional Coatings 1, 4 (2016).Google Scholar
  26. 26.
    D. D. Logvinenko, and O. P. Shelyakov, Intensification of Technological Processes in a Fluidized Bed Apparatus, p. 144, Publishing house “Technique”, Kiev, Ukraine (1976).Google Scholar
  27. 27.
    C. Ren, Z. Z. Fang, H. Zhang, M. Koopman, Int. J. Refract. Met. H. 61, 273 (2016).CrossRefGoogle Scholar
  28. 28.
    R. Jenkins and R. L. Snyder, Introduction to X-ray Powder Diffractometry, p. 432, J. Wiley & Sons Inc, New York, USA (1996).CrossRefGoogle Scholar
  29. 29.
    A. Patra, Md. Mera, S. Pal, N. Yedla, and S. K. Karak, Int. J. Refract. Met. H. 58, 57 (2016).CrossRefGoogle Scholar
  30. 30.
    G. K. Williamson and R. E. Smallman, Philos. Mag. 1, 34 (1956).CrossRefGoogle Scholar
  31. 31.
    R. E. Smallman and K. H. Westmacott, Philos. Mag. 2, 669 (1957).CrossRefGoogle Scholar
  32. 32.
    A. Patra, R. Saxena, and S. K. Karak, Int. J. Refract. Met. H. 60, 131 (2016).CrossRefGoogle Scholar
  33. 33.
    H. Wang and Z. Z. Fang, Int. J. Refract. Met. H. 28, 312 (2010).CrossRefGoogle Scholar
  34. 34.
    V. N. Chuvildeev, A. V. Nokhrin, G. V. Baranov, A. V. Moskvicheva, Yu. G. Lopatin, A. V Piskunov, et al. Nizhny Novgorod University Gazette them. NI Lobachevsky. 2, 47 (2010).Google Scholar
  35. 35.
    P. Jain and R. C. Chaudhary, Advances in Applied Science Research 4, 285 (2013).Google Scholar
  36. 36.
    C. Agte and J. Vacek, Wolfram und Molybdan, p. 216, Akad-Verlag, Berlin, Germany (1959).Google Scholar
  37. 37.
    N. P. Lyakishev, Phase Diagrams of Binary Metallic Systems, V. 1-3, p. 2484, Mechanical engineering, Moscow, Russia (1996-2000).Google Scholar
  38. 38.
    O. Bannyh and M. Dritz, Constitution Diagram of Binary and Multicomponent Iron-Based Systems, p. 440, Metallurgy, Moscow, Russia (1986).Google Scholar
  39. 39.
    G. A. Libenson, V. Y. Lopatin, and G. V. Komarnicki, Powder Metallurgy Processes. Vol. 2. The Molding and Sintering: A Textbook for High Schools, p. 320, MISiS, Moscow, Russia (2002).Google Scholar
  40. 40.
    D. I. Ryzhonkov, V. V. Levin, and E. L. Dzidziguri, Nanomaterials: A Tutorial, p. 366, Binom Laboratory Knowledge, Moscow, Russia (2012).Google Scholar
  41. 41.
    L. S. Vasiliev, I. L. Lomaev, and E. P. Elsukov, Phys. Met. Metallogr. 102, 201 (2006).Google Scholar
  42. 42.
    L. S. Vasiliev and S. F. Lomaeva, Metals 4, 48 (2003).Google Scholar
  43. 43.
    L. S. Vasiliev and S. F. Lomaeva, Phys. Met. Metallogr. 107, 152 (2009).Google Scholar
  44. 44.
    V. N. Chuvildeev, A. V. Nokhrin, G. V. Baranov, A. V. Moskvicheva, M. S. Boldin, D. N. Kotkov, et al. Nanotechnologies in Russia 8, 108 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Nguyen Van Minh
    • 1
  • Yury Konyukhov
    • 1
  • Gopalu Karunakaran
    • 1
    • 2
  • Dmitry Ryzhonkov
    • 1
  • Tang Duong
    • 1
  • Sergey Kotov
    • 1
  • Denis Kuznetsov
    • 1
  1. 1.Department of Functional Nanosystems and High-Temperature MaterialsNational University of Science and Technology “MISiS,”MoscowRussia
  2. 2.Department of BiotechnologyK. S. Rangasamy College of Arts and ScienceTiruchengodeIndia

Personalised recommendations