Advertisement

Metals and Materials International

, Volume 23, Issue 3, pp 610–617 | Cite as

Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

  • Yun Mo Yang
  • Chadrasekhar Loka
  • Dong Phil Kim
  • Sin Yong Joo
  • Sung Whan Moon
  • Yi Sik Choi
  • Jung Han Park
  • Kee-Sun Lee
Article
  • 132 Downloads

Abstract

High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

Keywords

anode materials lithium-ion battery silicon high-energy mechanical milling raman spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Edit. 47, 2930 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Armand and J. M. Tarascon, Nature 451, 652 (2008).CrossRefGoogle Scholar
  3. 3.
    E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, and I. Honma, Nano Lett. 8, 2277 (2008).CrossRefGoogle Scholar
  4. 4.
    J. M. Tarascon and M. Armand, Nature 414, 359 (2001).CrossRefGoogle Scholar
  5. 5.
    B. Kang and G. Ceder, Nature 458, 190 (2009).CrossRefGoogle Scholar
  6. 6.
    N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, J. Cho, G. B. Peter, et al. Angew. Chem. Int. Edit. 51, 9994 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Adv. Mater. 10, 725 (1998).CrossRefGoogle Scholar
  8. 8.
    S. Y. Hong, Y. Kim, Y. Park, A. Choi, N. Choic, and K. T. Lee, Energ. Environ. Sci. 6, 2067 (2013).CrossRefGoogle Scholar
  9. 9.
    H. Jung, M. Park, Y. G. Yoon, G. B. Kim, and S. K. joo, J. Power Sources 115, 346 (2003).Google Scholar
  10. 10.
    J. R. Szczech and S. Jin, Energ. Environ. Sci. 4, 56 (2011).CrossRefGoogle Scholar
  11. 11.
    H. Wu and Y. Cui, Nano Today 7, 414 (2012).CrossRefGoogle Scholar
  12. 12.
    M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, Adv. Mater. 25, 4966 (2013).CrossRefGoogle Scholar
  13. 13.
    F. Cheng, J. Liang, Z. Tao, and J. Chen, Adv. Mater. 23, 1695 (2011).CrossRefGoogle Scholar
  14. 14.
    L. F. Cui, R. Ruffo, C. K. Chan, H. L. Peng, and Y. Cui, Nano Lett. 9, 491 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. L. Zhou, X. L. Jiang, L. Chen, J. Yue, H. Y. Xu, J. Yang, et al. Electrochim. Acta 127, 252 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, Y. Cui, et al. Nano Lett. 11, 2949 (2011).CrossRefGoogle Scholar
  17. 17.
    M. K. Datta, J. Maranchi, S. J. Chung, R. Epur, K. Kadakia, P. N. Kumta, et al. Electrochim. Acta 56, 4717 (2011).CrossRefGoogle Scholar
  18. 18.
    S. B. Son, S. C. Kim, C. S. Kang, T. A. Yersak, Y. C. Kim, S. H. Lee, et al. Adv. Energy Mater. 2, 1226 (2012).CrossRefGoogle Scholar
  19. 19.
    H. W. Yang, J. H. Lee, S. C. Jung, S. T. Myung, W. S. Kang, and S. J. Kim, Korean J. Met. Mater. 54, 780 (2016).CrossRefGoogle Scholar
  20. 20.
    C. Loka, H. Yu, K. S. Lee, and J. S. Cho, J. Power Sources 244, 259 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. Aken, and J. Maier, Adv. Mater. 22, 2247 (2010).CrossRefGoogle Scholar
  22. 22.
    B. D. Polat, O. Keles, and K. Amine, Nano Lett. 15, 6702 (2015).CrossRefGoogle Scholar
  23. 23.
    T. Kasukabe, H. Nishihara, S. Iwamura, and T. Kyotani, J. Power Sources 319, 99 (2016).CrossRefGoogle Scholar
  24. 24.
    Y. Chen, J. Qian, Y. Cao, H. Yang, and X. Ai, ACS Appl. Mater. Interfaces 4, 3753 (2012).CrossRefGoogle Scholar
  25. 25.
    H. T. Yu, C. Loka, K. S. Lee, J. S. Cho, and S. H. Lee, Mater. Sci. Eng. B 178, 1422 (2013).CrossRefGoogle Scholar
  26. 26.
    H. R. Park, Y. J. Kwak, S. H. Lee, and M. Y. Song, Korean J. Met. Mater. 54, 916 (2016).CrossRefGoogle Scholar
  27. 27.
    S. Jung, H. Kwon, K. M. Roh, C. Y. Suh, and W. Kim, Met. Mater. Int. 21, 923 (2015).CrossRefGoogle Scholar
  28. 28.
    C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
  29. 29.
    C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi, and W. Z. Li, J. Electrochem. Soc. 145, 2751 (1998).Google Scholar
  30. 30.
    Y. Kawashima, Phys. Rev. B 52, 10053 (1995).CrossRefGoogle Scholar
  31. 31.
    M. Yoshikawa, G. Katagiri, H. Ishida, and A. Ishitani, Solid State Commun. 66, 1177 (1988).CrossRefGoogle Scholar
  32. 32.
    R. J. Nemanich and S. A. Solin, Phys. Rev. B 20, 392 (1979).CrossRefGoogle Scholar
  33. 33.
    H. Groult, T. Nakajima, N. J. Kumagai, L. Perrigaud, Y. Ohzawa, H. Yashiro, et al. J. Fluorine Chem. 126, 1111 (2005).CrossRefGoogle Scholar
  34. 34.
    J. Nanda, M. K. Datta, J. T. Remillard, A. O’Neill, and P. N. Kumta, Electrochem. Commun. 11, 235 (2009).CrossRefGoogle Scholar
  35. 35.
    M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Adv. Mater. 24, 6034 (2012).CrossRefGoogle Scholar
  36. 36.
    M. N. Obrovac and L. Christensen, Electrochem. Solid St. 7, A93 (2004).CrossRefGoogle Scholar
  37. 37.
    L. Y. Beaulieu, T. D. Hachard, A. Bonakdarpour, M. D. Fleischauer, and J. R. Dahn, J. Electrochem. Soc. 150, A1457 (2003).Google Scholar
  38. 38.
    S. H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, and H. K. Liu, Angew. Chem. Int. Edit. 45, 6896 (2006).CrossRefGoogle Scholar
  39. 39.
    D. Ma, Z. Cao, and A. Hu, Nano-Micro Lett. 6, 347 (2014).CrossRefGoogle Scholar
  40. 40.
    P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Edit. 47, 2930 (2008).CrossRefGoogle Scholar
  41. 41.
    J. R. Szczech and S. Jin, Energ. Environ. Sci. 4, 56 (2011).CrossRefGoogle Scholar
  42. 42.
    I. H. Son, J. H. Park, S. Kwon, S. Park, M. H. Rummeli, H. Chang, et al. Nat. Commu. 6, 7393 (2015).CrossRefGoogle Scholar
  43. 43.
    P. Limthongkul, Y. Jang, N. J. Dudney, and Y. M. Chiang, Acta Mater. 51, 1103 (2003).CrossRefGoogle Scholar
  44. 44.
    J. Li and J. R. Dahn, J. Electrochem. Soc. 154, 1765 (2007).Google Scholar
  45. 45.
    H. K. Han, C. Loka, Y. M. Yang, J. H. Kim, S. W. Moon, K. S. Lee, et al. J. Power Sources 281, 293 (2015).CrossRefGoogle Scholar
  46. 46.
    I. Kim, G. E. Blomgren, and P. N. Kumta, J. Power Sources 130, 275 (2004).CrossRefGoogle Scholar
  47. 47.
    M. Su, Z. Wang, H. Guo, X. Li, S. Huang, L. Gan, et al. Powder Technol. 249, 105 (2013).CrossRefGoogle Scholar
  48. 48.
    S. Yoo, J. Lee, S. Ko, and S. Park, Nano Energy 2, 1271 (2013).CrossRefGoogle Scholar
  49. 49.
    Q. Peng, C. Yungui, Z. Ding, X. Chenghao, H. Lihong, and D. Xiaobo, Rare Metal Mater. Eng. 43, 1073 (2014).CrossRefGoogle Scholar
  50. 50.
    S. Chou, J. Wang, M. Choucair, H. Liu, J. Stride, and S. Dou, Electrochem. Commun. 1, 1079 (2010).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yun Mo Yang
    • 1
  • Chadrasekhar Loka
    • 1
    • 2
  • Dong Phil Kim
    • 1
  • Sin Yong Joo
    • 1
  • Sung Whan Moon
    • 3
  • Yi Sik Choi
    • 3
  • Jung Han Park
    • 4
  • Kee-Sun Lee
    • 1
  1. 1.Department of Advanced Materials EngineeringKongju National UniversityGongjuRepublic of Korea
  2. 2.Smart Natural Space Research CenterKongju National UniversityGongjuRepublic of Korea
  3. 3.Research InstituteSapphire Technology Co.HwaseongRepublic of Korea
  4. 4.Rare Isotope Accelerator Promotion TeamMinistry of Science, ICT and Future PlanningGwacheonRepublic of Korea

Personalised recommendations