Advertisement

Metals and Materials International

, Volume 23, Issue 1, pp 148–162 | Cite as

Characterization of microstructure of HAZs in as-welded and service condition of P91 pipe weldments

  • C. PandeyEmail author
  • A. Giri
  • M. M. Mahapatra
  • P. Kumar
Article

Abstract

Steels 9-12% Cr, having the high creep rupture strength are advocated for the modern low polluting thermal power plants. In the present investigation, the P91 pipe weldments have been characterized for microstructural responses in as-welded, post-weld heat treatment (PWHT) and ageing conditions. The PWHT of welded samples were carried out at 760 °C for time of 2 h and ageing at 760 °C for 720 h and 1440 h, respectively. The effect of time has been studied on precipitates size, distribution of precipitates and grain sizes present in various zones of P91 steel weldments. The impact toughness and hardness variation of heat affected zone (HAZ) have also been studied in as-welded condition as well as at different heat treatment condition. A significant change was observed in grain size and precipitates size after each heat treatment condition. The maximum impact toughness of HAZ was obtained after PWHT at 760 °C for 2 h. The main phase observed in weld fusion zone in as-welded, PWHT and ageing conditions were M23C6, MX, M7C3, Fe-rich M3C and M2C. The unwanted Z-phase (NbCrN) was also noticed in weld fusion zone after ageing of 1440 h.

Keywords

tempering grain boundary toughness microstructure scanning electron microscopy (SEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Cerjak, P. Hofer, and B. Schaffernak, ISIJ Int. 39, 874 (1999).CrossRefGoogle Scholar
  2. 2.
    F. Masuyama, ISIJ Int. 41, 612 (2001).CrossRefGoogle Scholar
  3. 3.
    V. K. Sikka, C. T. Ward, and C. K. Thomas, Proceedings of International Conference on Ferritic Steels for High Temperature Applications (Ed. A.K. Khare), p. 65, ASM International, Ohio, USA (1983).Google Scholar
  4. 4.
    S. J. Sandersion, Proceeding of the ASM International Conference on on Ferritic Steels for High Temperature Applications (Ed. A.K. Khare), p. 85, ASM International, Ohio, USA (1983).Google Scholar
  5. 5.
    C. Coussment and A. Dhooge, Int. J. Pres. Ves. Pip. 45, 163 (1991).CrossRefGoogle Scholar
  6. 6.
    S. Haribabu, A. Amarendra, R. Rajaraman, and C. S. Sundar, J. Phys. Conf. 443, 1 (2013).Google Scholar
  7. 7.
    B. Arivazhagan and M. Kamaraj, J. Manuf. Process. 15, 542 (2013).CrossRefGoogle Scholar
  8. 8.
    B. Silwal, L. Li, A. Deceuster, and B. Griffiths, Weld. J. 92, 80 (2013).Google Scholar
  9. 9.
    C. Pandey, A. Giri, and M. M. Mahapatra, Mat. Sci. Eng. A 657, 173 (2016).CrossRefGoogle Scholar
  10. 10.
    C. Pandey, A. Giri, and M. M. Mahapatra, Mat. Sci. Eng. A 664, 58 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Pandey and M.M. Mahapatra, P. I. Mech. Eng. E, DOI: 10.1177/0954408916656678 (2016).Google Scholar
  12. 12.
    T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe, Int. J. Pres. Ves. Pip. 83, 63 (2006).CrossRefGoogle Scholar
  13. 13.
    B. Arivazhagan, S. Sundaresan, and M. Kamaraj, J. Mater. Process. Tech. 209, 5245 (2009).CrossRefGoogle Scholar
  14. 14.
    J. A. Francis, W. Mazur, and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 22, 1387 (2006).Google Scholar
  15. 15.
    Y. Wang, R. Kannan, and L. Li, Mater. Charact. 118, 225 (2016).CrossRefGoogle Scholar
  16. 16.
    S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, and M. Tabuchi, Int. J. Pres. Ves. Pip. 80, 405 (2003).CrossRefGoogle Scholar
  17. 17.
    D. J. Abson and J. S. Rothwell, Int. Mater. Rev. 58, 438 (2013).CrossRefGoogle Scholar
  18. 18.
    K. Sawada, M. Bauer, F. Kauffmann, P. Mayr, and A. Klenk, Mat. Sci. Eng. A 527, 1417 (2010).CrossRefGoogle Scholar
  19. 19.
    S. Spigrarelli and E. Quadrini, Mater. Design 23, 547 (2002).CrossRefGoogle Scholar
  20. 20.
    M. E. Abd El-Azim, O. E. El-Desoky, H. Ruoff, F. Kauffmann, and E. Roos, J. Mater. Sci. Tech. 29, 1027 (2013).CrossRefGoogle Scholar
  21. 21.
    M. L. Santella, R. W. Swinderman, R. W. Reed, and J. M. Tanzosh, M. L. Santella, R. W. Swinderman, R. W. Reed, and J. M. Tanzosh, EPRI Conference on 9Cr Materials Fabrication and Joining Technologies, p. 14–1, EPRI, California, USA (2001).Google Scholar
  22. 22.
    C. Pandey and M. M. Mahapatra, J. Mater. Eng. Perform. 25, 2761 (2016).CrossRefGoogle Scholar
  23. 23.
    K. E. Dawson, G. J. Tatlock, K. Chi, and P. Barnard, Metall. Mater. Trans. A 44, 5065 (2013).CrossRefGoogle Scholar
  24. 24.
    C. Pandey and M. M. Mahapatara, J. Mater. Eng. Perform. 25, 2195 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Paddea, J. A. Francis, A. M. Paradowaska, P. J. Bouchard, and I. A. Shibli, Mat. Sci. Eng. A 534, 663 (2012).CrossRefGoogle Scholar
  26. 26.
    K. Sawada, T. Hara, M. Tabuchi, K. Kimura, and K. Kubushiro, Mater. Charact. 101, 106 (2015).CrossRefGoogle Scholar
  27. 27.
    C. Pandey, A. Giri, and M. M. Mahapatra, Int. J. Steel Struct. 16, 333 (2016).CrossRefGoogle Scholar
  28. 28.
    D. P. Singh, M. Sharma, and J. S. Gill, Int. J. Res. Mech. Eng. Tech. 3, 216 (2013).Google Scholar
  29. 29.
    M. Sireesha, S. K. Albert, and S. Sundaresan, J. Mater. Eng. Perform. 10, 320 (2001).CrossRefGoogle Scholar
  30. 30.
    B. Arivazhagan and M. Vasudevan, J. Manuf. Process. 16, 305 (2014).CrossRefGoogle Scholar
  31. 31.
    H. K. Danielsen and J. Hald, Mat. Sci. Eng. A 505(1-2), 169 (2009).CrossRefGoogle Scholar
  32. 32.
    A. Golpayegani, H. O. Andren, H. Danielsen, and J. Hald, Mat. Sci. Eng. A 489, 310 (2008).CrossRefGoogle Scholar
  33. 33.
    C. Hurtado-Noreña, C. A. Danón, M. I. Luppo, and P. Bruzzoni, Metall. Mater. Trans. A 46, 3972 (2015).CrossRefGoogle Scholar
  34. 34.
    R. D. Peelamedu, R. Roy, and D. K. Agrawal, Mater. Lett. 55, 234 (2002).CrossRefGoogle Scholar
  35. 35.
    F. Abe, M. Taneike, and K. Sawada, Int. J. Press. Vessel. Pip. 84, 3 (2007).CrossRefGoogle Scholar
  36. 36.
    P. Mayr and H. Cerjak, T. Indian I. Metals 63, 131 (2010).Google Scholar
  37. 37.
    T. Kojima, K. Hayashi, and Y. Kajita, ISIJ Int. 35, 1284 (1995).CrossRefGoogle Scholar
  38. 38.
    Z. Nishiyama, Martensitic Transformation, Academic Press, USA (1978).Google Scholar
  39. 39.
    K. Laha, K. S. Chanddravathi, P. Parameswaran, B. S. Rao, and S. L. Mannan, Metallurg. Mater. Trans. A 38(A), 58 (2007).CrossRefGoogle Scholar
  40. 40.
    J. Onoro, J. Mater. Process. Technol. 180, 137 (2006).CrossRefGoogle Scholar
  41. 41.
    C. Pandey and M. M. Mahapatara, Proc. 23rd International Conference on Processing and Fabrication of Advanced Materials, IIT Roorkee, India (2014).Google Scholar
  42. 42.
    C. Pandey and M. M. Mahapatara, T. Indian I. Metals 69, 1657 (2016).Google Scholar
  43. 43.
    J. Blach, L. Falat, and P. Sevc, Eng. Fail. Anal. 16, 1397 (2009).CrossRefGoogle Scholar
  44. 44.
    C. Pandey, N. Saini, M. M. Mahapatra, and P. Kumar, Eng. Fail. Anal. 71, 131 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • C. Pandey
    • 1
    Email author
  • A. Giri
    • 1
  • M. M. Mahapatra
    • 2
  • P. Kumar
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringIndian Institute of TechnologyRoorkeeIndia
  2. 2.School of Mechanical SciencesIndian Institute of TechnologyBhubaneswarIndia

Personalised recommendations