Advertisement

Metals and Materials International

, Volume 23, Issue 2, pp 298–307 | Cite as

Comparative study of Oswald ripening and trans-interface diffusion-controlled theory models: Coarsening of γ′ precipitates affected by elastic strain along a concentration gradient

  • C. G. Garay-ReyesEmail author
  • S. E. Hernández-Martínez
  • J. L. Hernández-Rivera
  • J. J. Cruz-Rivera
  • E. J. Gutiérrez-Castañeda
  • H. J. Dorantes-Rosales
  • J. Aguilar-Santillan
  • R. Martínez-Sánchez
Article

Abstract

According to Lifshitz, Slyozov, and Wagner (LSW) and Trans-Interface Diffusion-Controlled (TICD) theoretical models, this paper reports the microstructure and its coarsening behavior of γ′ metastable-coherent precipitates in concentration gradient of Ni-13.75Ti (at%)/Ni generated by diffusion couple. The coarsening of precipitates was evaluated in two different Ti contents (R1-11.4Ti (at%) and R2-13Ti (at%)) generated along the concentration gradient and includes average size, size distributions and growth rate. The solvus and metastable-coherent bimodal lines as determined at 850 °C of 9.16 (at%) and 9.92Ti (at%) respectively by scanning electron microscopy. This paper suggests that elastic strains produced by the matrix/precipitate lattice mismatch caused significant deviations between the experimental results and those predicted by the LSW or TIDC theories. Activation energies for TIDC (Q i ) and LSW (Q r ) are Q r : 219.69 and 172.61 kJ mol-1 for R1 and R2 regions, respectively, and Q i : 218.46 and 164.56 kJmol-1 for R1 and R2 regions, respectively. A concentration gradient allows the study of various alloys with different concentration and volume-fraction in a single sample.

Keywords

alloys aging coarsening phase transformation transmission electron microscopy (TEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. M. Pollock and S. Tin, J. Propul. Power. 22, 361 (2006).CrossRefGoogle Scholar
  2. 2.
    S. Zhao, X. Xie, G. D. Smith, and S. J. Patel, Mater. Lett. 58, 1784 (2004).CrossRefGoogle Scholar
  3. 3.
    L. Hongyu, Z. Lingli, S. Xiping, W. Yanli, and C. Guoliang, Rare Metals 28, 197 (2009).CrossRefGoogle Scholar
  4. 4.
    R. C. Reed, The Superalloys Fundamentals and Applications, pp.33–114, Cambridge University Press, UK (2008).Google Scholar
  5. 5.
    A. Baldan, J. Mater. Sci. 37, 2171 (2002).CrossRefGoogle Scholar
  6. 6.
    L. Ratke and P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing, pp.117–150, Springer Science & Business Media, Germany (2002).Google Scholar
  7. 7.
    G. Kostorz, Phase Transformations in Materials, pp.309–407, WILEY-VCH Verlag GmbH, Weinheim, Germany (2001).CrossRefGoogle Scholar
  8. 8.
    C. Wagner, Z. Elektrochem. 65, 581 (1961).Google Scholar
  9. 9.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids. 19, 35 (1961).CrossRefGoogle Scholar
  10. 10.
    A. J. Ardell, Acta Metall. 20, 61 (1972).CrossRefGoogle Scholar
  11. 11.
    A. D. Brailsford and P. Wynblatt, Acta Metall. 27, 489 (1979).CrossRefGoogle Scholar
  12. 12.
    C. K. L. Davies, P. Nash, and R. N. Stevens, Acta Metall. 28, 179 (1980).CrossRefGoogle Scholar
  13. 13.
    K. Tsumaraya and Y. Miyata, Acta Metall. 31, 437 (1983).CrossRefGoogle Scholar
  14. 14.
    J. A. Marqusee and J. Rose, J. Chem. Phys. 80, 536 (1984).CrossRefGoogle Scholar
  15. 15.
    M. Tokuyama and K. Kawasaki, Physica A. 123, 386 (1984).CrossRefGoogle Scholar
  16. 16.
    P. W. Voorhees and M. E. Glicksman, Acta Metall. 32, 2001 (1984).CrossRefGoogle Scholar
  17. 17.
    D. M. Kim and A. J. Ardell, Scripta Mater. 43, 381 (2000).CrossRefGoogle Scholar
  18. 18.
    A. Maheshwari and A. J. Ardell, Acta Metall. Mater. 40, 2661 (1992).CrossRefGoogle Scholar
  19. 19.
    D. M. Kim and A. J. Ardell, Metall. Mater. Trans. A 35, 3063 (2004).CrossRefGoogle Scholar
  20. 20.
    D. M. Kim and A. J. Ardell, Acta Mater. 51, 4073 (2003).CrossRefGoogle Scholar
  21. 21.
    J. H. Cho and A. J. Ardell, Acta Mater. 46, 5907 (1998).CrossRefGoogle Scholar
  22. 22.
    A. J. Ardell, Scripta Metall. Mater. 24, 343 (1990).CrossRefGoogle Scholar
  23. 23.
    A. J. Ardell and V. Ozolins, Nature Mater. 4, 309 (2005).CrossRefGoogle Scholar
  24. 24.
    A. J. Ardell, Acta Mater. 58, 4325 (2010).CrossRefGoogle Scholar
  25. 25.
    A. J. Ardell, Metall. Trans. B 1, 525 (1970).CrossRefGoogle Scholar
  26. 26.
    R. Grune, Acta Metall. 36, 2797 (1988).CrossRefGoogle Scholar
  27. 27.
    R. Sinclair, J. A. Leake, and B. Ralph, Phys. Status Solidi A 26, 285 (1974).CrossRefGoogle Scholar
  28. 28.
    P. Vyskocil, J.S. Pedersen, G. Kostorz, and B. Schönfeld, Acta Mater. 45, 3311 (1997).CrossRefGoogle Scholar
  29. 29.
    A. J. Ardell, D. M. Kim, and V. Ozolins, Z. Metallkde. 97, 295 (2006).CrossRefGoogle Scholar
  30. 30.
    A. J. Ardell, J. Mater. Sci. 46, 4832 (2011).CrossRefGoogle Scholar
  31. 31.
    C. G. Garay-Reyes, F. Hernández-Santiago, N. Cayetano-Castro, V. M. López-Hirata, J. García-Rocha, J. L. Hernández-Rivera, et al. Mater. Charact. 83, 35 (2013).CrossRefGoogle Scholar
  32. 32.
    C. G. Garay-Reyes, F. Hernández-Santiago, N. Cayetano-Castro, R. Martínez-Sánchez, J. L. Hernández-Rivera, H. J. Dorantes-Rosales, et al. B. Mater. Sci. 37, 823 (2014).CrossRefGoogle Scholar
  33. 33.
    A. D. Sequeira, H. A. Calderon, G. Kostorz, and J. S. Pedersen, Acta Metall. Mater. 43, 3441 (1995).CrossRefGoogle Scholar
  34. 34.
    S. Hinotani and Y. Ohmori, T. Jpn. I. Met. 29, 116 (1988).CrossRefGoogle Scholar
  35. 35.
    B. Wierzba, Physica A 392, 2860 (2013).CrossRefGoogle Scholar
  36. 36.
    C. A. C. Sequeira and L. Amaral, T. Nonferr. Metal. Soc. 24, 1 (2014).CrossRefGoogle Scholar
  37. 37.
    M. H. de Sá, I. Isomäki, J. A. Ferreira, M. Hämäläinen, and M. H. Braga, Mater. Sci. Forum. 730-732, 775 (2013).Google Scholar
  38. 38.
    C. Y. Cui, Y. F. Gu, D. H. Ping, H. Harada, and T. Fukuda, Mat. Sci. Eng. A 485, 651 (2008).CrossRefGoogle Scholar
  39. 39.
    M. J. Donachie and S. J. Donachie, Superalloys: A Technical Guide, 2nd Ed., pp.25–39, ASM International, Ohio, USA (2002).Google Scholar
  40. 40.
    K. Hashimoto and T. Tsujimoto, T. Jpn. I. Met. 19, 77 (1978).CrossRefGoogle Scholar
  41. 41.
    A. Taylor and R. W. Floyd, J. I. Met. 81, 25 (1952-53).Google Scholar
  42. 42.
    Y. A. Bagariatskii and Y. D. Tiapkin, Sov. Phys. Crystallogr. 2, 414 (1957).Google Scholar
  43. 43.
    Y. A. Bagariatskii and Y. D. Tiapkin, Sov. Phys. Crystallogr. 5, 841 (1961).Google Scholar
  44. 44.
    C. Bücle, B. Genty, and J. Manenc, Rev. Metall. 56, 247 (1959).Google Scholar
  45. 45.
    D. H. Ben Israel and M. E. Fine, Acta metall. 11, 1051 (1963).CrossRefGoogle Scholar
  46. 46.
    S. L. Sass, T. Mur, and J. B. Cohen, Philos. Mag. 16, 680 (1967).CrossRefGoogle Scholar
  47. 47.
    K. Saito and R. Watanabe, Jpn. J. Appl. Phys. 8, 14 (1969).CrossRefGoogle Scholar
  48. 48.
    R. Sinclair, J. A. Leake, and B. Ralph, Phys. Status Solidi A 26, 285 (1974).CrossRefGoogle Scholar
  49. 49.
    D. E. Laughlin, Acta Metall. 24, 53 (1976).CrossRefGoogle Scholar
  50. 50.
    R. Grune, Acta Metall. 36, 2797 (1988).CrossRefGoogle Scholar
  51. 51.
    A. Cerri, B. Schönfeld, and G. Kostorz, Phys. Rev. B 42, 958 (1990).CrossRefGoogle Scholar
  52. 52.
    R. Bucher, B. Demè, H. Heinrich, J. Kohlbrecher, M. Kompatscher, G. Kostorz, et al. Mat. Sci. Eng. A 324, 77 (2002).CrossRefGoogle Scholar
  53. 53.
    M. Kompatscher, B. Schönfeld, H. Heinrich, and G. Kostorz, Acta Mater. 51, 165 (2003).CrossRefGoogle Scholar
  54. 54.
    A. C. Lund, P. W. Voorhees, Philos. Mag. 83, 1719 (2003).CrossRefGoogle Scholar
  55. 55.
    A. J. Ardell and R. B. Nicholson, Acta Metall. 14, 1295 (1966).CrossRefGoogle Scholar
  56. 56.
    T. Miyazaki, H. Imamura, and T. Kozaki, Mater. Sci. Eng. 54, 9 (1982).CrossRefGoogle Scholar
  57. 57.
    R. A. Mackay and L. J. Ebert, Metall. Mater. Trans. A 16, 1969 (1985).CrossRefGoogle Scholar
  58. 58.
    J. D. Eshelby, P. R. Soc. A 241, 376 (1957).CrossRefGoogle Scholar
  59. 59.
    H. Yamauchi and D. De Fontaine, Acta Metall. 27, 763 (1979).CrossRefGoogle Scholar
  60. 60.
    W. C. Johnson and J. K. Lee, Metall. Mater. Trans. A 10, 1141 (1979).CrossRefGoogle Scholar
  61. 61.
    E. H. Yoffe, Philos. Mag. 30, 923 (1974).CrossRefGoogle Scholar
  62. 62.
    A. G. Khachaturyan, Sov. Phys. Sol. State. 8, 2163 (1967).Google Scholar
  63. 63.
    W. C. Johnson, Metall. Mater. Trans. A 14, 2219 (1983).CrossRefGoogle Scholar
  64. 64.
    T. Miyazaki, H. Imamura, H. Mori, and T. Kozaki, J. Mater. Sci. 16, 1197 (1981).CrossRefGoogle Scholar
  65. 65.
    M. Doi, T. Miyazaki, and T. Wakatsuki, Mater. Sci. Eng. 67, 247 (1984).CrossRefGoogle Scholar
  66. 66.
    M. Doi, T. Miyazaki, and T. Wakatsuki, Mater. Sci. Eng. 74, 139 (1985).CrossRefGoogle Scholar
  67. 67.
    M. Doi and T. Wakatsuki, Mater. Sci. Eng. 78, 87 (1986).CrossRefGoogle Scholar
  68. 68.
    A. G. Khachaturyan, S. V. Semenovskaya, and J. W. Morris Jr, Acta Metall. 36, 1563 (1988).CrossRefGoogle Scholar
  69. 69.
    P. W. Voorhees, J. Stat. Phys. 38, 231 (1985).CrossRefGoogle Scholar
  70. 70.
    P. Fratzl, O. Penrose, and J. L. Lebowitz, J. Stat. Phys. 95, 1429 (1999).CrossRefGoogle Scholar
  71. 71.
    A. Maheshwari and A. J. Ardell, Acta Metall. Mater. 40, 2661 (1992).CrossRefGoogle Scholar
  72. 72.
    J. H. Cho and A. J. Ardell, Acta Mater. 46, 5907 (1998).CrossRefGoogle Scholar
  73. 73.
    D. M. Kim and A. J. Ardell, Scripta Mater. 43, 381 (2000).CrossRefGoogle Scholar
  74. 74.
    D. M. Kim and A. J. Ardell, Acta Mater. 51, 4073 (2003).CrossRefGoogle Scholar
  75. 75.
    D. M. Kim and A. J. Ardell, Metall. Mater. Trans. A. 35, 3063 (2004).CrossRefGoogle Scholar
  76. 76.
    P. K. Footner and B. P. Richards, J. Mater. Sci. 17, 2141 (1982).CrossRefGoogle Scholar
  77. 77.
    M. Jahazi and A. R. Mashreghi, Mater. Sci. Tech. 18, 458 (2002).CrossRefGoogle Scholar
  78. 78.
    D. Hadjiapostolidou and B. A. Shollock, Superalloys 2008: Proc. Eleventh International Symposium on Superalloys (eds. R. C. Reed, K. A. Green, P. Caron, T. P. Gabb, M. G. Fahrmann, E. S. Huron, and S. A. Woodard), pp.733–739, TMS, PA, USA (2008).Google Scholar
  79. 79.
    J. Safari, S. Nategh, and M. McLean, Mater. Sci. Tech. 22, 888 (2006).CrossRefGoogle Scholar
  80. 80.
    B. G. Choi, I. S. Kim, D. H. Kim, S. M. Seo, and C. Y. Jo, Superalloys 2004: Proc. Tenth International Symposium on Superalloys (eds. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, and S, Walston), pp.163–171, TMS, PA, USA (2004).Google Scholar
  81. 81.
    Z. Guo and W. Sha, Mater. Trans. 43, 1273 (2002).CrossRefGoogle Scholar
  82. 82.
    A. J. Ardell, Metall. Mater. Trans. A 16, 2131 (1985).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • C. G. Garay-Reyes
    • 1
    Email author
  • S. E. Hernández-Martínez
    • 2
  • J. L. Hernández-Rivera
    • 2
    • 3
  • J. J. Cruz-Rivera
    • 2
  • E. J. Gutiérrez-Castañeda
    • 2
    • 3
  • H. J. Dorantes-Rosales
    • 4
  • J. Aguilar-Santillan
    • 5
  • R. Martínez-Sánchez
    • 1
  1. 1.Centro de Investigación de Materiales Avanzados (CIMAV)Laboratorio Nacional de NanotecnologíaChihuahuaMéxico
  2. 2.Instituto de MetalurgiaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  3. 3.Cátedra CONACYTConsejo Nacional de Ciencia y Tecnología, Crédito ConstructorMéxicoMéxico
  4. 4.Instituto Politécnico NacionalESIQIE-DIMD.F., MéxicoMéxico
  5. 5.Materials Research and Development DivisionMaterials and Tools LLCGilbertUSA

Personalised recommendations