Advertisement

Metals and Materials International

, Volume 23, Issue 1, pp 26–34 | Cite as

Effect of r-value and texture on plastic deformation and necking behavior in interstitial-free steel sheets

  • Gyu-Jin Oh
  • Kye-Man Lee
  • Moo-Young HuhEmail author
  • Jin Eon Park
  • Soo Ho Park
  • Olaf Engler
Article

Abstract

Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.

Keywords

tensile test work hardening necking texture interstitial-free steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. Davies, JOM 28, 21(1976).CrossRefGoogle Scholar
  2. 2.
    R. Sowerby, C. S. Da C. Viana, and G. J. Davies, Mater. Sci. Eng. 46, 23 (1980).CrossRefGoogle Scholar
  3. 3.
    C. Y. Tang and W. H. Tai, J. Mater. Process. Tech. 99, 135 (2000).CrossRefGoogle Scholar
  4. 4.
    K. C. Chan and J. Liang, J. Mater. Process. Tech. 100, 214 (2000).CrossRefGoogle Scholar
  5. 5.
    K. K. Cho, Y. H. Chung, C. W. Lee, S. I. Kwun, and M. C. Shin, Scripta Mater. 40, 651 (1999).CrossRefGoogle Scholar
  6. 6.
    Y. H. Chung, K. K. Cho, J. H. Han, and M. C. Shin, Scripta Mater. 43, 759 (2000).CrossRefGoogle Scholar
  7. 7.
    L. Delannay and M. R. Barnett, Int. J. Plast. 32-33, 70 (2012).CrossRefGoogle Scholar
  8. 8.
    A. K. Vasudevan and M. A. Przystupa, W. G. Fricke, Scripta Metall. Mater. 24, 1429 (1990).CrossRefGoogle Scholar
  9. 9.
    N. J. Kim and E. W. Lee, Acta Metall. Mater. 41, 941 (1993).CrossRefGoogle Scholar
  10. 10.
    F. Barlat and J. Liu, Mat. Sci. Eng. A 257, 47(1998).CrossRefGoogle Scholar
  11. 11.
    A. N. Kumar, Scripta Mater. 34, 369 (1996).Google Scholar
  12. 12.
    F. Li and P. S. Bate, Acta Metall. Mater. 39, 2639 (1991).CrossRefGoogle Scholar
  13. 13.
    E. Romhanji, D. Mitlin, and V. Radmilovic, Mat. Sci. Eng. A 291, 160 (2000).CrossRefGoogle Scholar
  14. 14.
    A. B. Lopes, F. Barlat, J. J. Gracio, J. F. Ferreira Duarte, and E. F. Rauch, Int. J. Plast. 19, 1 (2003).CrossRefGoogle Scholar
  15. 15.
    S. Li, O. Engler, and P. Van Houtte, Model. Simul. Mater. Sc. 13, 783 (2005).Google Scholar
  16. 16.
    C. W. Ha and N. J. Park, Korean J. Met. Mater. 52, 589 (2014).CrossRefGoogle Scholar
  17. 17.
    G. E. Dieter and D. Bacon, Mechanical Metallurgy, McGraw-Hill Book Company, New York, USA (1986).Google Scholar
  18. 18.
    W. F. Hosford and R. M. Caddell, Metal Forming: Mechanics and Metallurgy, 3rd ed., Cambridge University Press, New York, USA (2007).CrossRefGoogle Scholar
  19. 19.
    W. A. Backofen, Deformation Processing, Addison-Wesley Pub. Co., Massachusetts, USA (1972).Google Scholar
  20. 20.
    D. Jia, Y. M. Wang, K. T. Ramesh, E. Ma, Y. T. Zhu, and R. Z. Valiev, Appl. Phys. Lett. 79, 611 (2001).CrossRefGoogle Scholar
  21. 21.
    F. F. Wu, S. T. Li, G. A. Zhang, X. F. Wu, and P. Lin, Appl. Phys. Lett. 103, 151910 (2013).CrossRefGoogle Scholar
  22. 22.
    H. F. Tan, B. Zhang, X. M. Luo, X. D. Sun, and G. P. Zhang, Mat. Sci. Eng. A 609, 318 (2014).CrossRefGoogle Scholar
  23. 23.
    K. Yang, Yu. Ivanisenko, A. Caron, A. Chuvilin, L. Kurmanaeva, H.-J. Fecht, et al. Acta Mater. 58, 967 (2010).CrossRefGoogle Scholar
  24. 24.
    K. S. Chan and D. A. Koss, Metall. Mater. Trans. A 14, 1333 (1983).CrossRefGoogle Scholar
  25. 25.
    K. S. Chan, D. A. Koss, and A. K. Ghosh, Metall. Mater. Trans. A 15, 323 (1984).CrossRefGoogle Scholar
  26. 26.
    H. Zhang and K. Ravi-Chandar, Int. J. Fract. 150, 3 (2008).CrossRefGoogle Scholar
  27. 27.
    Y. Bao, Eng. Fract. Mech. 72, 505 (2005).CrossRefGoogle Scholar
  28. 28.
    S. Y. Han, S. A. Jang, H.-C. Eun, J.-H. Choi, K. R. Lee, S. Y. Shin, et al. Korean J. Met. Mater. 54, 759 (2016).CrossRefGoogle Scholar
  29. 29.
    O. Engler, Aluminium 80, 719 (2004).Google Scholar
  30. 30.
    O. Engler and J. Aegerter, Mat. Sci. Eng. A 618, 663 (2014).CrossRefGoogle Scholar
  31. 31.
    H. J. Bunge, Texture Analysis in Materials Science, Butterworths, London, UK (1982).Google Scholar
  32. 32.
    O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, Orientation Mapping, 2nd ed., CRC Press, Boca Raton, USA (2010).Google Scholar
  33. 33.
    K. M. Lee, M. Y. Huh, S. H. Park, and O. Engler, ISIJ Int. 52, 522 (2012).CrossRefGoogle Scholar
  34. 34.
    Y. B. Pyon, K. M. Lee, M. Y. Huh, and O. Engler, Int. J. Mater. Res. 101, 1029 (2010).CrossRefGoogle Scholar
  35. 35.
    S. G. Son, H. K. Kim, J. H. Cho, H. W. Kim, and J. C. Lee, Met. Mater. Int. 22, 108 (2016).CrossRefGoogle Scholar
  36. 36.
    R. A. Lebensohn and C. N. Tomé, Acta Metall. Mater. 41, 2611 (1993).CrossRefGoogle Scholar
  37. 37.
    C. N. Tomé and R. A. Lebensohn, Continuum Scale Simulation of Engineering Materials: Fundamentals - Microstructures - Process Applications (eds. D. Raabe, F. Roters, F. Barlat, and L. Q. Chen), p. 473, Wiley-VCH, Weinheim, Germany (2004).Google Scholar
  38. 38.
    G. I. Taylor, J. Inst. Met. 62, 307 (1938).Google Scholar
  39. 39.
    J. F. W. Bishop and R. Hill, Lond. Edinb. Dubl. Phil. Mag.: Ser.7 42, 414 (1951).CrossRefGoogle Scholar
  40. 40.
    C.-G. Oertel, I. Huensche, W. Skrotzki, W. Knabl, A. Lorich, and J. Resch, Mat. Sci. Eng. A 483-484, 79 (2008).CrossRefGoogle Scholar
  41. 41.
    Y. I. Jung, M. H. Lee, J. Y. Park, and Y. H. Jeong, Met. Mater. Int. 15, 803 (2009).CrossRefGoogle Scholar
  42. 42.
    A. K. Vasudévan, W. G. Fricke, R. C. Malcolm, R. J. Bucci, M. A. Przystupa, and F. Barlat, Metall. Mater. Trans. A 19, 731 (1988).CrossRefGoogle Scholar
  43. 43.
    H. Garmestani, S. R. Kalidindi, L. Williams, C. M. Bacaltchuk, C. Fountain, O. S. Es-Said, et al. Int. J. Plast. 18, 1373 (2002).CrossRefGoogle Scholar
  44. 44.
    G. G. Yapici, I. Karaman, and H. J. Maier, Mat. Sci. Eng. A 434, 294 (2006).CrossRefGoogle Scholar
  45. 45.
    Z. L. Zhang, M. Hauge, J. Ødegård, and C. Thaulow, Int. J. Solids Struct. 36, 3497 (1999).CrossRefGoogle Scholar
  46. 46.
    A. Bacha, D. Daniel, and H. Klocker, J. Mater. Process. Tech. 184, 272 (2007).CrossRefGoogle Scholar
  47. 47.
    L. Ghalandari and M. M. Moshksar, J. Alloy. Compd. 506, 172 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Gyu-Jin Oh
    • 1
  • Kye-Man Lee
    • 1
  • Moo-Young Huh
    • 1
    Email author
  • Jin Eon Park
    • 2
  • Soo Ho Park
    • 2
  • Olaf Engler
    • 3
  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
  2. 2.Stainless Steel Research Group, Technical Research LaboratoriesPOSCOPohangRepublic of Korea
  3. 3.Hydro Aluminium Rolled Products GmbH, Research and Development BonnBonnGermany

Personalised recommendations