Advertisement

Metals and Materials International

, Volume 23, Issue 1, pp 92–97 | Cite as

High temperature corrosion of hot-dip aluminized steel in Ar/1%SO2 gas

  • Muhammad Ali Abro
  • Dong Bok LeeEmail author
Article

Abstract

Carbon steels were hot-dip aluminized in Al or Al-1at%Si baths, and corroded in Ar/1%SO2 gas at 700-800 °C for up to 50 h. The aluminized layers consisted of not only an outer Al(Fe) topcoat that had interdispersed needle-like Al3Fe particles but also an inner Al-Fe alloy layer that consisted of an outer Al3Fe layer and an inner Al5Fe2 layer. The Si addition in the bath made the Al(Fe) topcoat thin and nonuniform, smoothened the tongue-like interface between the Al-Fe alloy layer and the substrate, and increased the microhardness of the aluminized layer. The aluminized steels exhibited good corrosion resistance by forming thin α-Al2O3 scales, along with a minor amount of iron oxides on the surface. The interdiffusion that occurred during heating made the aluminized layer thick and diffuse, resulting in the formation of Al5Fe2, AlFe and AlFe3 layers. It also smoothened the tongue-like interface, and decreased the microhardness of the aluminized layer. The non-aluminized steel formed thick, nonadherent, nonprotective (Fe3O4, FeS)-mixed scales.

Keywords

metals surface modification oxidation scanning electron microscopy (SEM) Al hot-dipping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. J. Wang and S. M. Chen, Surf. Coat. Tech. 200, 6601 (2006).CrossRefGoogle Scholar
  2. 2.
    W. J. Cheng and C. J. Wang, Appl. Surf. Sci. 257, 4663 (2011).CrossRefGoogle Scholar
  3. 3.
    N. Ei-Mahallawy, M. Taha, M. Shady, A. Ei-Sissi, A. Attia, and W. Reif, Mater. Sci. Tech. 13, 832 (1997).CrossRefGoogle Scholar
  4. 4.
    M. S. Kwon and C. Y. Kang, Korean J. Met. Mater. 54, 40 (2016).CrossRefGoogle Scholar
  5. 5.
    I. I. Danzo, K. Verbeken, and Y. Houbaert, Thin Solid Films 520, 1638 (2011).CrossRefGoogle Scholar
  6. 6.
    M. A. Abro and D. B. Lee, Metals 6, 38 (2016).CrossRefGoogle Scholar
  7. 7.
    W. J. Cheng and C. J. Wang, Mater. Charact. 61, 467 (2010).CrossRefGoogle Scholar
  8. 8.
    T. V. Trung, S. K. Kim, M. J. Kim, S. K. Kim, S. J. Bong, and D. B. Lee, Korean J. Met. Mater. 50, 575 (2012).CrossRefGoogle Scholar
  9. 9.
    W. Deqing, Appl. Surf. Sci. 254, 3026 (2008).CrossRefGoogle Scholar
  10. 10.
    I. I. Danzo, Y. Houbaert, and K. Verbeken, Surf. Coat. Tech. 251, 15 (2014).CrossRefGoogle Scholar
  11. 11.
    W. J. Cheng and C. J. Wang, Surf. Coat. Tech. 204, 824 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Bouche, F. Barbier, and A. Coulet, Mat. Sci. Eng. A 249, 167 (1998).CrossRefGoogle Scholar
  13. 13.
    M. V. Akdeniz, A. O. Mekhrabov, and T. Yilmaz, Scripta Metall. Mater. 31, 1723 (1994).CrossRefGoogle Scholar
  14. 14.
    G. Eggeler, W. Auer, and H. Kaesche, J. Mater. Sci. 21, 3348 (1986).CrossRefGoogle Scholar
  15. 15.
    R. A. Grange, C. R. Hribal, and L. F. Porter, Metall. Trans. A 8, 1775 (1977).CrossRefGoogle Scholar
  16. 16.
    K. Zaba, Arch. Metall. Mater. 56, 871 (2011).Google Scholar
  17. 17.
    M. J. Kim and D. B. Lee, Met. Mater. Int. 22, 430 (2016).CrossRefGoogle Scholar
  18. 18.
    I. Barin, Thermochemical Data of Pure Substances, pp. 444–909, VCH, Germany (1989).Google Scholar
  19. 19.
    D. B Lee and M. J. Kim, Korean. J. Met. Mater. 53, 406 (2015).CrossRefGoogle Scholar
  20. 20.
    M. B. Lin and C. J. Wang, Surf. Coat. Tech. 205, 1220 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Department of Mechanical EngineeringMehran University of Engineering and TechnologyJamshoroPakistan

Personalised recommendations