Metals and Materials International

, Volume 23, Issue 1, pp 35–42 | Cite as

Effect of heat treatment on tensile and fatigue deformation behavior of extruded Al-12 wt%Si alloy

  • Gi-Su Ham
  • Min-Seok Baek
  • Jong-Ho Kim
  • Si-Woo Lee
  • Kee-Ahn LeeEmail author


This study investigated the effect of heat treatment on tensile and high-cycle fatigue deformation behavior of extruded Al-12 wt%Si alloy. The material used in this study was extruded at a ratio of 17.7: 1 through extrusion process. To identify the effects of heat treatment, T6 heat treatment (515 °C/1 h, water quenching, and then 175 °C/10 h) was performed. Microstructural observation identified Si phases aligned in the extrusion direction in both extruded alloy (F) and heat treated alloy (T6). The average grain size of F alloy was 8.15 °C, and that of T6 alloy was 8.22 °C. Both alloys were composed of Al matrix, Si, Al2Cu, Al3Ni and AlFeSi phases. As T6 heat treatment was applied, Al2Cu phases became more finely and evenly distributed. Tensile results confirmed that yield strength increased from 119.0 MPa to 329.0 MPa, ultimate tensile strength increased from 226.8 MPa to 391.4 MPa, and the elongation decreased from 16.1% to 5.0% as T6 heat treatment was applied. High-cycle fatigue results represented F alloy’s fatigue limit as 185 MPa and T6 alloy’s fatigue limit as 275 MPa, indicating that high-cycle fatigue properties increased significantly as heat treatment was conducted. Through tensile and fatigue fracture surface analysis, this study considered the deformation behaviors of extruded and heat treated Al-Si alloys in relation to their microstructures.


metals aging fatigue tensile test Al-Si alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Yildirim and D. Ozyurek, Mater. Design 51, 767 (2013).CrossRefGoogle Scholar
  2. 2.
    A. Thirugnanam, K. Sukumaran, U. T. S. Pillai, K. Raghukandan, and B. C. Pai, Mat. Sci. Eng. A 445-446, 405 (2007).CrossRefGoogle Scholar
  3. 3.
    K. Lee, Y. Kwon, and S. Lee, J. Alloy. Compd. 461, 532 (2008).CrossRefGoogle Scholar
  4. 4.
    H. K. Feng, S. R. Yu, Y. L. Li, and L. Y. Gong, J. Mater. Process. Tech. 208, 330 (2008).CrossRefGoogle Scholar
  5. 5.
    H. R. Ammar, A. M. Samuel, and F. H. Samuel, Mat. Sci. Eng. A 473, 58 (2008).CrossRefGoogle Scholar
  6. 6.
    G. Rajaram, S. Kumaran, and T. Srinivasa Rao, Mat. Sci. Eng. A 528, 247 (2010).Google Scholar
  7. 7.
    B. Zhang, D. R. Poirier, and W. Chen, Met. Mater. Trans. A 30, 2659 (1999).CrossRefGoogle Scholar
  8. 8.
    K. Gall, N. Yang, M. Horstemeyer, D. L. McDowell, and J. Fan, Met. Mater. Trans. A 30, 3079 (1999).CrossRefGoogle Scholar
  9. 9.
    Y. Li, Y. Yang, Y. Wu, L. Wang, and X. Liu, Mat. Sci. Eng. A 527, 7132 (2010).CrossRefGoogle Scholar
  10. 10.
    H. R. Ammar, A. M. Samuel, and F. H. Samuel, Int. J. Fatigue 30, 1024 (2008).CrossRefGoogle Scholar
  11. 11.
    J. Liu, Q. Zhang, Z. Zuo, and Y. Xiong, J. Mater. Eng. Perform. 22, 3834 (2013).CrossRefGoogle Scholar
  12. 12.
    E. Cerri, E. Evangelista, S. Spigarelli, P. Cavaliere, and F. DeRiccardis, Mat. Sci. Eng. A 284, 254 (2000).CrossRefGoogle Scholar
  13. 13.
    L. G. Hou, C. Cui, and J. S. Zhang, Mat. Sci. Eng. A 527, 6400 (2010).CrossRefGoogle Scholar
  14. 14.
    V. C. Srivastava, R. K. Mandal, and S. N. Ojha, Mat. Sci. Eng. A 304-306, 555 (2001).CrossRefGoogle Scholar
  15. 15.
    P. Kapranos, D. H. Kirkwood, H. V. Atkinson, J. T. Rheinlander, J. J. Bentzen, P. T. Toft, et al. J. Mater. Process. Tech. 135, 271 (2003).CrossRefGoogle Scholar
  16. 16.
    J. Asensio-Lozano and B. Suarez-Pena, Scripta Metall. Mater. 54, 943 (2006).CrossRefGoogle Scholar
  17. 17.
    K. G. Basavakumar, P. G. Mukunda, and M. Chakraborty, Mater. Design 30, 1258 (2009).CrossRefGoogle Scholar
  18. 18.
    J. W. Yeh, S. Y. Yuan, and C. H. Peng, Mat. Sci. Eng. A 252, 212 (1998).CrossRefGoogle Scholar
  19. 19.
    X. Baiqing, Z. Yongan, W. Qiang, S. Likai, X. Changan, S. Chengjia, et al. J. Mater. Process. Tech. 137, 183 (2003).CrossRefGoogle Scholar
  20. 20.
    F. Liu, F. Yu, D. Zhao, and L. Zuo, Mat. Sci. Eng. A 528, 3786 (2011).CrossRefGoogle Scholar
  21. 21.
    V. O. Abramov, O. V. Abramov, B. B. Straumal, and W. Gust, Mater. Design 18, 323 (1997).CrossRefGoogle Scholar
  22. 22.
    Z. Jun-wen and W. Shu-sen, T. Nonferr. Metal. Soc. 20, 754 (2010).CrossRefGoogle Scholar
  23. 23.
    D. H. Jeong, S. M. Hyun, H. K. Sung, Y. N. Kwon, and S. S. Kim, Met. Mater. Int. 22, 594 (2016).CrossRefGoogle Scholar
  24. 24.
    G. Y. Kim, K. S. Kim, J. C. Park, S. K. Kim, Y. O. Yoon, and K.-A. Lee, Korean J. Met. Mater. 52, 283 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Gi-Su Ham
    • 1
  • Min-Seok Baek
    • 1
  • Jong-Ho Kim
    • 2
  • Si-Woo Lee
    • 3
  • Kee-Ahn Lee
    • 1
    Email author
  1. 1.School of Advanced Materials EngineeringAndong National UniversityAndongRepublic of Korea
  2. 2.Research Institute of Industrials Science & TechnologyPohangRepublic of Korea
  3. 3.Bowon Light MetalYesanRepublic of Korea

Personalised recommendations