Advertisement

Metals and Materials International

, Volume 23, Issue 2, pp 341–349 | Cite as

Resistance spot weldability of lightweight steel with a high Al content

  • Insung Hwang
  • Dongcheol Kim
  • Munjin Kang
  • Jae-Hyun Kwak
  • Young-Min KimEmail author
Article

Abstract

Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweight steel was evaluated under various electrode forces, welding currents, and times. The acceptable welding conditions were specified; however, these had very narrow ranges and there was little difference between the conditions determined for the AC- and DC-type welding. In both types of welding with electrode forces of of 300 kgf and 400 kgf, the acceptable weld currents were 5.0 kA and 5.5 kA, respectively. Also, the nugget size increased with the welding current. Under the acceptable welding conditions, there were no significant changes in the maximum tensile shear strength and nugget size, as 6.4-6.6 kN and 4.1-4.3 mm, respectively. The microstructure of weld metals was consisted of martensite, austenite and ferrite. And the small fraction of martensite was founded in the heat affected zone (HAZ), therefore the weld metal had the greatest hardness, and HAZ softening did not occur in this study. Considering the fracture surface, cleavage and ductile fracture were investigated because of the existence of martensite and ferrite in the welds.

Keywords

welding lightweight steel high aluminum content microstructure scanning electron microscopy (SEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Jacques, Curr. Opin. Solid St. M. 8, 259 (2004).CrossRefGoogle Scholar
  2. 2.
    S. Zaefferer, J. Ohlert, and W. Bleck, Acta Mater. 52, 2765 (2004).CrossRefGoogle Scholar
  3. 3.
    I. B. Timokhina, P. D Hodgson, and E. V. Pereloma, Metall. Mater. Trans. A 35, 2331 (2004).CrossRefGoogle Scholar
  4. 4.
    G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).CrossRefGoogle Scholar
  5. 5.
    S. Y. Han, S. Y. Shin, S. Lee, N. J. Kim, J. H. Kwak, and K. Chin, Korean J. Met. Mater. 48, 377 (2010).CrossRefGoogle Scholar
  6. 6.
    B.-W. Choi, D.-H. Seo, and J.-I. Jang, Met. Mater. Int. 15, 373 (2009).CrossRefGoogle Scholar
  7. 7.
    I. Choi, Y. Park, D. Son, S.-J. Kim, and M. Moon, Met. Mater. Int. 16, 27 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Bouquerel, K. Verbeken, and B. C. De Cooman, Acta Mater. 54, 1443 (2006).CrossRefGoogle Scholar
  9. 9.
    S. Vercammen, B. Blanpain, B. C. De Cooman, and P. Wollants, Acta Mater. 52, 2005 (2004).CrossRefGoogle Scholar
  10. 10.
    N. Lim, H. Park, S. Kim, and C. Park, Met. Mater. Int. 18, 647 (2012).CrossRefGoogle Scholar
  11. 11.
    O. Boaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid St. M. 15, 141 (2011).CrossRefGoogle Scholar
  12. 12.
    J. E. Jung, J. Park, J.-S. Kim, J. B. Jeon, S. K. Kim, and Y. W. Chang, Met. Mater. Int. 20, 27 (2014).CrossRefGoogle Scholar
  13. 13.
    J.-S. Kim, J. B. Jeon, J. E. Jung, K.-K. Um, and Y. W. Chang, Met. Mater. Int. 20, 27 (2014).CrossRefGoogle Scholar
  14. 14.
    K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee, J. Alloy. Compd. 505, 217 (2010).CrossRefGoogle Scholar
  15. 15.
    G. Frommeyer and J. A. Jiménez, Metall. Mater. Trans. A 36, 295 (2005).CrossRefGoogle Scholar
  16. 16.
    B. Hwang, T.-H. Lee, J.-H. Shin, and J.-W. Lee, Korean J. Met. Mater. 52, 21 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Kim, D.-W. Suh, and N. J. Kim, Sci. Technol. Adv. Mater. 14, 1 (2013).CrossRefGoogle Scholar
  18. 18.
    D.-W. Suh, S. J. Park, T. H. Lee, C. S. Oh, and S. J. Kim, Metall. Mater. Trans. A 41, 397 (2010).CrossRefGoogle Scholar
  19. 19.
    H. Huang, D. Gan, and P. W. Kao, Scr. Metall. Mater. 30, 499 (1994).CrossRefGoogle Scholar
  20. 20.
    W. K. Choo, J. H. Kim, and J. C. Yoon, Acta Mater. 45, 4877 (1997).CrossRefGoogle Scholar
  21. 21.
    C. L. Lin, C. G. Chao, H. Y. Bor, and T. F. Liu, Mater. Trans. 51, 1084 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Y. Han, S. Y. Shin, S. Lee, N. J. Kim, J.-H. Kwak, and K.-G. Chin, Metall. Mater. Trans. A 42, 138 (2011).CrossRefGoogle Scholar
  23. 23.
    F. D’Errico, J. Fail. Anal. Preven. 10, 351 (2010).CrossRefGoogle Scholar
  24. 24.
    S. S. Sohn, B.-J. Lee, S. Lee, and J.-H. Kwak, Met. Mater. Int. 21, 43 (2015).CrossRefGoogle Scholar
  25. 25.
    D. J. Radakovic and M. Tumuluru, Weld. J. 87, 96 (2008).Google Scholar
  26. 26.
    M. I. Khan, M. L. Kuntz, P. Su, A. Gerlich, T. North, and Y. Zhou, Sci. Technol. Weld. Joi. 12, 175 (2007).CrossRefGoogle Scholar
  27. 27.
    M. I. Khan, M. L. Kuntz, and Y. Zhou, Sci. Technol. Weld. Joi. 13, 294 (2008).CrossRefGoogle Scholar
  28. 28.
    G. S. Jung, K. Y. Lee, J. B. Lee, H. K. D. H. Bhadeshia, and D.-W. Suh, Sci. Technol. Weld. Joi. 17, 92 (2012).CrossRefGoogle Scholar
  29. 29.
    S. Daneshpour, S. Riekehr, M. Kocak, V. Ventzke, and A. I. Korkuk, Sci. Technol. Weld. Joi. 12, 508 (2007).CrossRefGoogle Scholar
  30. 30.
    H. L. Yi, K. Y. Lee, J. H. Lim, and H. K. D. H. Bhadeshia, Sci. Technol. Weld. Joi. 15, 619 (2010).CrossRefGoogle Scholar
  31. 31.
    D. C. Saha, S. Han, K. G. Chin, I. Choi, and Y.-D. Park, Steel Res. Int. 83, 352 (2012).CrossRefGoogle Scholar
  32. 32.
    J. Yu, J. Shim, and S. Rhee, Mater. Trans. 53, 2011 (2012).CrossRefGoogle Scholar
  33. 33.
    M. I. Khan, M. L. Kuntz, E. Biro, and Y. Zhou, Mater. Trans. 49, 1629 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Insung Hwang
    • 1
  • Dongcheol Kim
    • 1
  • Munjin Kang
    • 1
  • Jae-Hyun Kwak
    • 2
  • Young-Min Kim
    • 1
    Email author
  1. 1.Joining R&D GroupKorea Institute of Industrial TechnologyIncheonRepublic of Korea
  2. 2.Sheet Products & Process Research GroupTechnical Research Laboratories, POSCOKwangyangRepublic of Korea

Personalised recommendations