Metals and Materials International

, Volume 23, Issue 1, pp 214–219 | Cite as

Hydrogen gas detection of Nb2O5 nanoparticle-decorated CuO nanorod sensors

  • Hyejoon Kheel
  • Gun-Joo Sun
  • Jae Kyung Lee
  • Ali Mirzaei
  • Seungbok Choi
  • Chongmu LeeEmail author


Pristine and Nb2O5 nanoparticles-decorated CuO nanorods were prepared successfully by a two step process: the thermal evaporation of a Cu foil and the spin coating of NbCl5 solution on CuO nanorods followed by thermal annealing. X-ray diffraction was performed to examine the structure and purity of the synthesized nanoatuctures. Scanning electron microscopy was used to examine the morphology and shape of the nanostuctures. The Nb2O5 nanoparticles-decorated CuO nanorod sensor showed responses of ~217.05-862.54%, response times of ~161-199 s and recovery times of ~163-171 s toward H2 gas with concentrations in a range of 0.5 - 5% at the optimal working temperature of 300 °C. The Nb2O5 nanoparticle-decorated CuO nanorod sensor showed superior sensing performance to the pristine CuO nanorod sensor for the same H2 concentration range. The underlying mechanism for the enhanced hydrogen sensing performance of the CuO nanorods decorated with Nb2O5 nanoparticles is discussed.


semiconductors nanostructured materials oxidation electrical properties scanning electron microscopy (SEM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, Int. J. Hydrogen Energ. 36, 2462 (2011).CrossRefGoogle Scholar
  2. 2.
    S. Park, S. Park, S. Lee, H. W. Kim, and C. Lee, Sens. Actuators B 202, 840 (2014).CrossRefGoogle Scholar
  3. 3.
    T. Hübert, L. Boon-Brett, G. Black, and U. Banach, Sens. Actuators B 157, 329 (2011).CrossRefGoogle Scholar
  4. 4.
    H. G. Z. Wang and Y. Hu, Sensors 12, 5517 (2012).CrossRefGoogle Scholar
  5. 5.
    K. Pirkanniemi and M. Sillanpää, Chemosphere 48, 1047 (2002).CrossRefGoogle Scholar
  6. 6.
    M. M. Bettahar, G. Costentin, L. Savary, and J. C. Lavalley, Appl. Catal. A-Gen. 145, 1 (1996).CrossRefGoogle Scholar
  7. 7.
    Y. Motooka and A. Ozaki, J. Catal. 5, 116 (1966).CrossRefGoogle Scholar
  8. 8.
    S. S. Kaye and J. R. Long, J. Am. Chem. Soc. 127, 6506 (2005).CrossRefGoogle Scholar
  9. 9.
    Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, ACS Appl. Mater. Interfaces 2, 2915 (2010).CrossRefGoogle Scholar
  10. 10.
    H.-R. Kim, A. Haensch, I.-D. Kim, N. Barsan, U. Weimar, and J.-H. Lee, Adv. Funct. Mater. 21, 4456 (2011).CrossRefGoogle Scholar
  11. 11.
    H.-R. Kim, K.-I. Choi, K.-M. Kim, I.-D. Kim, G. Cao, and J.-H. Lee, Chem. Commun. 46, 5061 (2010).CrossRefGoogle Scholar
  12. 12.
    S. Park, H. Kheel, G.-J. Sun, H. W. Kim, T. Ko, and C. Lee, Met. Mater. Int. 22, 730 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Park, H. Ko, S. An, W. Lee, S. Lee, and C. Lee, Ceram. Int. 39, 5255 (2013).CrossRefGoogle Scholar
  14. 14.
    H. Meng, W. Yang, K. Ding, L. Feng, and Y. Guan, J. Mater. Chem. A 3, 1174 (2015).CrossRefGoogle Scholar
  15. 15.
    H. J. Lee, T. G. Kim, H. Oh, W. Lee, and H. Ryu, Korean J. Met. Mater. 53, 445 (2015).CrossRefGoogle Scholar
  16. 16.
    U. H. Lee, H. J. Lee, and C. M. Park, Korean J. Met. Mater. 54, 469 (2015).CrossRefGoogle Scholar
  17. 17.
    K. Zhou, R. Wang, B. Xu, and Y. Li, Nanotechnology 17, 3939 (2016).CrossRefGoogle Scholar
  18. 18.
    L. B. Chen, N. Lu, C. M. Xu, H. C. Yu, and T. H. Wang, Electrochim. Acta 54, 4198 (2009).CrossRefGoogle Scholar
  19. 19.
    Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, C. H. Sow, et al. Nanotechnology 16, 88 (2005).CrossRefGoogle Scholar
  20. 20.
    A. H. Macdonald, Nature 414, 409 (2001).CrossRefGoogle Scholar
  21. 21.
    S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. C. Hung, et al. Sens. Actuators A 171, 207 (2011).CrossRefGoogle Scholar
  22. 22.
    C. Yang, F. Xiao, J. Wang, and X. Su, Sens. Actuators B 207, 177 (2015).CrossRefGoogle Scholar
  23. 23.
    C. Yang, X. Cao, S. Wang, L. Zhang, F. Xiao, X. Su, and J. Wang, Ceram. Int. 41, 1749 (2015).CrossRefGoogle Scholar
  24. 24.
    S. Park, S. An, Y. Mun, and C. Lee, ACS Appl. Mater. Interfaces 5, 4285 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Kim, C. Jin, S. Park, S. Kim, and C. Lee, Sens. Actuators B 161, 594 (2012).CrossRefGoogle Scholar
  26. 26.
    G. Korotcenkov, S. D. Han, and J. R. Stetter, Chemical 109, 1402 (2009).Google Scholar
  27. 27.
    J. M. Lim, K. C. Shin, and H. W. Kim, Thin Solid Films 475, 256 (2005).CrossRefGoogle Scholar
  28. 28.
    N. Barsan and U. Weimer, Electroceram. 7, 143 (2001).CrossRefGoogle Scholar
  29. 29.
    Z. Zhu, C.-T. Kao, and R.-J. Wu, Appl. Sur. Sci. 320, 348 (2014).CrossRefGoogle Scholar
  30. 30.
    D. R. Patil and L. A. Patil, Talanta 77, 1409 (2009).CrossRefGoogle Scholar
  31. 31.
    H.-J. Kim and J.-H. Lee, Sens. Actuators B 192, 607 (2014).CrossRefGoogle Scholar
  32. 32.
    F. Qu, J. Liu, Y. Wang, S. Wen, Y. Chen, S. Ruan, et al. Sens. Actuators B 199, 346 (2014).CrossRefGoogle Scholar
  33. 33.
    H. Zhang, J. Feng, T. Fei, S. Liu, and T. Zhang, Sens. Actuators B 190, 472 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hyejoon Kheel
    • 1
  • Gun-Joo Sun
    • 1
  • Jae Kyung Lee
    • 1
  • Ali Mirzaei
    • 2
  • Seungbok Choi
    • 3
  • Chongmu Lee
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonRepublic of Korea
  2. 2.Department of Materials Science and EngineeringShiraz UniversityShirazIran
  3. 3.Department of Mechanical EngineeringInha UniversityIncheonRepublic of Korea

Personalised recommendations