Advertisement

Metals and Materials International

, Volume 23, Issue 1, pp 175–183 | Cite as

Extending the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation

  • Xiangtao DengEmail author
  • Tianliang FuEmail author
  • Zhaodong Wang
  • Guohuai Liu
  • Guodong Wang
  • R. D. K. Misra
Article

Abstract

We underscore here a novel approach to extend the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation. The proposed approach yields a refined microstructure and high density nano-sized precipitates, with consequent increase in strength. Steels subjected to ultra-fast cooling during austenite-to-ferrite transformation led to 145 MPa increase in yield strength, while the small deformation after ultra-fast cooling process led to increase in strength of 275 MPa. The ultra-fast cooling refined the ferrite and pearlite constituents and enabled uniform dispersion, while the deformation after ultra-fast cooling promoted precipitation and broke the lamellar pearlite to spherical cementite and long thin strips of FexC. The contribution of nano-sized precipitates to yield strength was estimated to be ~247.9 MPa and ~358.3 MPa for ultrafast cooling and deformation plus ultrafast cooling processes. The nano precipitates carbides were identified to be (Ti, Nb)C and had a NaCl-type crystal structure, and obeyed the Baker-Nutting orientation relationship with the ferrite matrix.

Keywords

Ti-Nb bearing steel ultra-fast cooling deformation precipitation behavior mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. J. Petch, Philos. Mag. 3, 1089 (1958).CrossRefGoogle Scholar
  2. 2.
    S. N. Prasad and D. S. Sarma, Mat. Sci. Eng. A 399, 161 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Thompson, M. Ferry, and P. A. Manohar, ISIJ Int. 41, 891 (2001).CrossRefGoogle Scholar
  4. 4.
    E. V. Pereloma, C. Bayley, and J. D. Boyd, Mat. Sci. Eng. A 210, 16 (1996).CrossRefGoogle Scholar
  5. 5.
    S. Shanmugam, N. K. Ramisetti, R. D. K. Misra, T. Mannering, D. Panda, and S. Jansto, Mat. Sci. Eng. A 460-461, 335 (2007).CrossRefGoogle Scholar
  6. 6.
    R. D. K. Misra, H. Nathani, J. E. Hartmann, and F. Siciliano, Mat. Sci. Eng. A 394, 339 (2005).CrossRefGoogle Scholar
  7. 7.
    G. D. Wang, Shanghai Metal 30, 1 (2008).Google Scholar
  8. 8.
    Y. Tian, S. Tang, B. Wang, Z. D. Wang, and G. D. Wang, Sci. China Technol. Sc. 55, 1566 (2012).CrossRefGoogle Scholar
  9. 9.
    X. Li, Z. Wang, X. Deng, G. Wang, and R. D. K. Misra, Metall. Mater. 47A, 1929 (2016).CrossRefGoogle Scholar
  10. 10.
    B. Wang, Z. Y. Liu, X. G. Zhou, G. D. Wang, and R. D. K. Misra, Mat. Sci. Eng. A 575, 189 (2013).CrossRefGoogle Scholar
  11. 11.
    X. T. Deng, Z. D. Wang, R. D. K. Misra, J. Han, and G. D Wang, J. Mater. Eng. Perform. 24, 1072 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda, ISIJ Int. 44, 1945 (2004).CrossRefGoogle Scholar
  13. 13.
    K. Seto, Y. Funakawa, and S. Kaneko, JFE Technical Report 10, 19 (2007).Google Scholar
  14. 14.
    Y. Funakawa and K. Seto, Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan 93, 49 (2007).CrossRefGoogle Scholar
  15. 15.
    I. B. Timokhina, P. D. Hodgson, S. P. Ringer, R. K. Zheng, and E. V. Pereloma, Scripta Mater. 56, 601 (2007).CrossRefGoogle Scholar
  16. 16.
    C. Y. Chen, H. W. Yen, F. H. Kao, W. C. Li, C. Y. Huang, J. R. Yang, and S. H. Wang, Mat. Sci. Eng. A 499, 162 (2009).CrossRefGoogle Scholar
  17. 17.
    H. W. Yen, C. Y. Huang, and J. R. Yang, Scripta Mater. 61, 616 (2009).CrossRefGoogle Scholar
  18. 18.
    H. W. Yen, C. Y. Chen, T. Y. Wang, C. Y. Huang, and J. R. Yang, Mater. Sci. Tech. Ser. 26, 421 (2010).CrossRefGoogle Scholar
  19. 19.
    J. H. Jang, C.-H. Lee, Y.-U. Heo, and D.-W. Suh, Acta Mater. 60, 208 (2012).CrossRefGoogle Scholar
  20. 20.
    S. G. Hong, K. B. Kang, and C. G. Park, Scripta Mater. 46, 163 (2002).CrossRefGoogle Scholar
  21. 21.
    C. Y. Chen, H. W. Yen, F. H. Kaoa, W. C. Li, C. Y. Huang, J. R. Yang, et al. Mat. Sci. Eng. A 499, 162 (2009).CrossRefGoogle Scholar
  22. 22.
    Z. Jia, R. D. K. Misra, R. O’ Malley, and S. J. Jansto, Mat. Sci. Eng. A 528, 7077 (2011).CrossRefGoogle Scholar
  23. 23.
    K. Kamibayashi, Y. Tanabe, Y. Takemoto, I. Shimizu, and T. Senuma, ISIJ Int. 52, 151 (2012).CrossRefGoogle Scholar
  24. 24.
    J. H. Jang, Y. U. Heo, C. H. Lee, H. K. D. H. Bhadeshia, and D.-W. Suh, Mater. Sci. Tech. Ser. 29, 309 (2013).CrossRefGoogle Scholar
  25. 25.
    C. Y. Chena, C. C. Chen, and J. R. Yang, Mater. Charact. 88, 69 (2014).CrossRefGoogle Scholar
  26. 26.
    N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, and T. Furuhara, ISIJ Int. 54, 212 (2014).CrossRefGoogle Scholar
  27. 27.
    D. B. Park, M. Y. Huh, J. H. Shim, J. Y. Suh, K. H. Lee, and W. S. Jung, Mat. Sci. Eng. A 560, 528 (2013).CrossRefGoogle Scholar
  28. 28.
    R. Okamoto, A. Borgenstam, and J. Ågren, Acta Mater. 58, 4783 (2010).CrossRefGoogle Scholar
  29. 29.
    F. B. Pickering, Physical Metallurgy and the Design of Steels, p. 63, Applied Science Publishers Ltd, London, UK (1978).Google Scholar
  30. 30.
    Q. L. Yong, Secondary Phases in Steels, p. 8, Metallurgy Industry Press, Beijing, China (2006).Google Scholar
  31. 31.
    L. H. Friedman and D. C. Chrzan, Phys. Rev. Lett. 83, 2715 (1998).CrossRefGoogle Scholar
  32. 32.
    M. F. Ashby, Strengthening Methods in Crystals, p. 9, Applied Science Publishers Ltd, London, UK (1971).Google Scholar
  33. 33.
    T. Gladman, The Physical Metallurgy of Microalloyed Steels, p. 39, Institute of Materials, London, UK (1997).Google Scholar
  34. 34.
    A. J. E. Foreman and M. J. Makin, Can. J. Phys. 45, 511 (1967).CrossRefGoogle Scholar
  35. 35.
    Y. Ohmori, Trans. ISIJ Int. 11, 339 (1971).Google Scholar
  36. 36.
    R. D. K. Misra, K. K. Tenneti, and G. G. Weatherly, Metall. Mater. 34A, 2341 (2003).CrossRefGoogle Scholar
  37. 37.
    R. M. Brito and H. J. Kestenbach, J. Mater. Sci. 16, 1257 (1981).CrossRefGoogle Scholar
  38. 38.
    H. Kestenbach, Mater. Sci. Tech. Ser. 13, 731 (1997).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangPR China
  2. 2.Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations