Metals and Materials International

, Volume 23, Issue 2, pp 272–282 | Cite as

Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy



In this paper, molecular dynamics (MD) simulation based study of creep behavior for nanocrystalline (NC) Ni-3 at% Zr alloy having grain size ~ 6 nm has been performed using embedded atom method (EAM) potential to study the influence of variation of temperature (1220-1450 K) as well as change in stress (0.5-1.5 GPa) on creep behavior. All the simulated creep curves for this ultra-fine grained NC Ni-Zr alloy has extensive tertiary creep regime. Primary creep regime is very short and steady state creep part is almost absent. The effect of temperatures and stress is prominent on the nature of the simulated creep curves and corresponding atomic configurations. Additionally, mean square displacement calculation has been performed at 1220 K, 1250 K, 1350 K, and 1450 K temperatures to correlate the activation energy of atomic diffusion and creep. The activation energy of creep process found to be less compared to activation energies of self-diffusion for Ni and Zr in NC Ni-3 at% Zr alloy. Formation of martensite is identified during creep process by common neighbour analysis. Presence of dislocations is observed only in primary regime of creep curve up till 20 ps, as evident from calculated dislocation density through MD simulations. Coble creep is found to be main operative mechanism for creep deformation of ultrafine grained NC Ni-3 at% Zr alloy.


molecular dynamics creep nanostructured materials deformation computer simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. S. Murty, P. Shankar, B. Raj, B. B. Rath, and J. Murday, Textbook of Nanoscience and Nanotechnology, pp.1–28, Springer Berlin Heidelberg, Germany (2013).CrossRefGoogle Scholar
  2. 2.
    R. Kelsall, I. W. Hamley, and M. Geoghegan (Eds.), Nanoscale Science and Technology, pp.272–276, John Wiley & Sons, USA (2005).CrossRefGoogle Scholar
  3. 3.
    H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
  4. 4.
    H. Gleiter, Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
  5. 5.
    C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
  6. 6.
    U. F. Kocks and H. Mecking, Prog. Mater. Sci. 48, 171 (2003).CrossRefGoogle Scholar
  7. 7.
    A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, Scripta Metall. Mater. 23, 1679 (1989).CrossRefGoogle Scholar
  8. 8.
    G. W. Nieman, J. R. Weertman, and R. W. Siegel, Scripta Metall. Mater. 23, 2013 (1989).CrossRefGoogle Scholar
  9. 9.
    H. Chang, C. J. Altstetter, and R. S. Averback, J. Mater. Res. 7, 2962 (1992).CrossRefGoogle Scholar
  10. 10.
    V. Yamakov, D. Wolf, M. Salazar, S. R. Phillpot, and H. Gleiter, Acta Mater. 49, 2713 (2001).CrossRefGoogle Scholar
  11. 11.
    J. Schiøtz and K. W. Jacobsen, Science 301, 1357 (2003).CrossRefGoogle Scholar
  12. 12.
    H. V. Swygenhoven, M. Spaczer, and A. Caro, Acta Mater. 47, 3117 (1999).CrossRefGoogle Scholar
  13. 13.
    V. Y. Gertsman, M. Hoffmann, H. Gleiter, and R. Birringer, Acta Metall. Mater. 42, 3539 (1994).CrossRefGoogle Scholar
  14. 14.
    R. A. Masumura, P. M. Hazzledine, and C. S. Pande, Acta Mater. 46, 4527 (1998).CrossRefGoogle Scholar
  15. 15.
    T. G. Desai, P. Millett, and D. Wolf, Mat. Sci. Eng. A 493, 41 (2008).CrossRefGoogle Scholar
  16. 16.
    K. A. Padmanabhan, S. Sripathi, H. Hahn, and H. Gleiter, Mater. Lett. 133, 151 (2014).CrossRefGoogle Scholar
  17. 17.
    M. E. Kassner, Fundamentals of Creep in Metals and Alloys, pp.189–232, Butterworth Heinemann, London, UK (2015).Google Scholar
  18. 18.
    F. R. N. Nabarro and F. De Villiers, Physics of Creep and Creep-Resistant Alloys, pp.47–65, CRC Press, Bristol, UK (1995).Google Scholar
  19. 19.
    R. Raj and M. F. Ashby, Metall. Trans. 2, 1113 (1971).CrossRefGoogle Scholar
  20. 20.
    C. Herring, J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
  21. 21.
    R. L. Coble, J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
  22. 22.
    R. Subramanian, A. Metoki, C. V. Alejandro, S. Yamagishi, and M. Okazaki, Mech. Eng. Lett. 1, 15-00461 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. Ashkenazy and R. S. Averback, Nano Lett. 12, 4084 (2012).CrossRefGoogle Scholar
  24. 24.
    F. R. Nabarro, Report of a Conference on the Strength of Solids, p. 75, The Physical Society, London, UK (1948).Google Scholar
  25. 25.
    S. V. Petegem, S. Brandstetter, B. Schmitt, and H. Van Swygenhoven, Scripta Mater. 60, 297 (2009).CrossRefGoogle Scholar
  26. 26.
    S. Ghosh and A. H. Chokshi, Scripta Mater. 86, 13 (2014).CrossRefGoogle Scholar
  27. 27.
    J. Hu, G. Sun, X. Zhang, G. Wang, Z. Jiang, S. Han, et al. J. Alloy. Compd. 647, 670 (2015).CrossRefGoogle Scholar
  28. 28.
    J. Berry, J. Rottler, C. W. Sinclair, and N. Provatas, Phys. Rev. B 92, 134103 (2015).CrossRefGoogle Scholar
  29. 29.
    Y. J. Wang, A. Ishii, and S. Ogata, Mater. Trans. 53, 156 (2012).CrossRefGoogle Scholar
  30. 30.
    P. Keblinski, D. Wolf, and H. Gleiter, Interface Sci. 6, 205 (1998).CrossRefGoogle Scholar
  31. 31.
    V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 50, 61 (2002).CrossRefGoogle Scholar
  32. 32.
    P. C. Millett, T. Desai, V. Yamakov, and D. Wolf, Acta Mater. 56, 3688 (2008).CrossRefGoogle Scholar
  33. 33.
    Y. J. Wang, A. Ishii, and S. Ogata, Phys. Rev. B 84, 224102 (2011).CrossRefGoogle Scholar
  34. 34.
    M. Meraj and S. Pal, T. Indian I. Metals 69, 277 (2015).CrossRefGoogle Scholar
  35. 35.
    M. A. Bhatia, S. N. Mathaudhu, and K. N. Solanki, Acta Mater. 99, 382 (2015).CrossRefGoogle Scholar
  36. 36.
    B. N. Kim, K. Hiraga, Y. Sakka, and B. W. Ahn, Acta Mater. 47, 3433 (1999).CrossRefGoogle Scholar
  37. 37.
    B. N. Kim and K. Hiraga, Acta Mater. 48, 4151 (2000).CrossRefGoogle Scholar
  38. 38.
    A. J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 51, 2097 (2003).CrossRefGoogle Scholar
  39. 39.
    J. W. Cahn and J. E. Taylor, Acta Mater. 52, 4887 (2004).CrossRefGoogle Scholar
  40. 40.
    Z. T. Trautt, A. Adland, A. Karma, and Y. Mishin, Acta Mater. 60, 6528 (2012).CrossRefGoogle Scholar
  41. 41.
    C. H. Konrad, R. Völkl, and U. Glatzel, Oxid. Met. 77, 149 (2012).CrossRefGoogle Scholar
  42. 42.
    D. Chen, Comp. Mater. Sci. 3, 327 (1995).CrossRefGoogle Scholar
  43. 43.
    J. Li, Model. Simul. Mater. Sc. 11, 173 (2003).CrossRefGoogle Scholar
  44. 44.
    S. L. Gafner, L. V. Redel, and Y. Y. Gafner, J. Exp. Theor. Phys. 114, 428 (2012).CrossRefGoogle Scholar
  45. 45.
    W. Ding, H. He, and B. Pan, J. Mater. Sci. 50, 5684 (2015).CrossRefGoogle Scholar
  46. 46.
    J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91, 4950 (1987).CrossRefGoogle Scholar
  47. 47.
    D. Faken and H. Jónsson, Comp. Mater. Sci. 2, 279 (1994).CrossRefGoogle Scholar
  48. 48.
    C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).CrossRefGoogle Scholar
  49. 49.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  50. 50.
    S. R. Wilson and M. I. Mendelev, Philos. Mag. 95, 224 (2015).CrossRefGoogle Scholar
  51. 51.
    A. Stukowski, Model. Simul. Mater. Sc. 18, 015012 (2010).CrossRefGoogle Scholar
  52. 52.
    S. Gollapudi, K. V. Rajulapati, I. Charit, C. C. Koch, R. O. Scattergood, and K. L. Murty, Mat. Sci. Eng. A 527, 5773 (2010).CrossRefGoogle Scholar
  53. 53.
    C. Ni, H. Ding, and X. J. Jin, J. Alloy. Compd. 546, 1 (2013).CrossRefGoogle Scholar
  54. 54.
    T. Song and B. C. De Cooman, ISIJ Int. 54, 2394 (2014).CrossRefGoogle Scholar
  55. 55.
    S. Kajiwara, Metall. Mater. Trans. A 17, 1693 (1986).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Metallurgical and Materials Engineering DepartmentNational Institute of TechnologyRourkelaIndia

Personalised recommendations