Metals and Materials International

, Volume 23, Issue 1, pp 126–131 | Cite as

Characterization of γ and γ′ phases in 2nd and 4th generation single crystal nickel-base superalloys

  • Maciej Zietara
  • Steffen Neumeier
  • Mathias Göken
  • Aleksandra Czyrska-Filemonowicz


A Ni based single crystal superalloy from the 2nd generation, PWA 1484, and one from the 4th generation, PWA 1497, were comparatively studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and nanoindentation technique in an atomic force microscope (NI-AFM) after high temperature creep deformation. During primary creep of both generations of superalloys, γ′ precipitates start to coalesce and grow directionally. Further creep deformation leads to the topological inversion and coarsening of the rafted microstructure. The NI-AFM technique was used for measurements of the hardness of the γ and γ′ phases in as-received and creep deformed samples in various conditions. The g matrix of the PWA 1497 superalloy is on average 0.8 GPa harder than that of PWA 1484 that can be explained by higher content of Re and Ru, since they partition predominantly to the matrix phase.


superalloy NI-AFM nanoindentation rafting creep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Reed, The Superalloys: Fundamentals and Application, p. 1, Cambridge University Press, Cambridge, UK (2006).CrossRefGoogle Scholar
  2. 2.
    A. Czyrska-Filemonowicz, B. Dubiel, M. Zietara, and A. Cetel, Inzynieria Materialowa 3-4, 128 (2007).Google Scholar
  3. 3.
    M. Zietara, A. Cetel, and A. Czyrska-Filemonowicz, Mater. Trans. 52, 336 (2011).CrossRefGoogle Scholar
  4. 4.
    M. Zietara, A. Kruk, A. Gruszczynski, and A. Czyrska-Filemonowicz, Mater. Charact. 87, 143 (2014).Google Scholar
  5. 5.
    M. Zietara, Ph. D. Thesis, pp.1, 30–90, AGH University of Science and Technology, Poland (2011).Google Scholar
  6. 6.
    M. Göken and M. Kempf, Acta Mater. 47, 1043 (1999).CrossRefGoogle Scholar
  7. 7.
    K. Durst and M. Göken, Mat. Sci. Eng. A 387-389, 312 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Neumeier, M. Dinkel, F. Pyczak, and M. Göken, Mat. Sci. Eng. A 528, 815 (2011).CrossRefGoogle Scholar
  9. 9.
    H. Rehman, K. Durst, S. Neumeier, and A. Parsa, Mat. Sci. Eng. A 634,202 (2015).CrossRefGoogle Scholar
  10. 10.
    W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
  11. 11.
    Z. Peng, I. Povstugar, K. Matuszewski, R. Rettig, R. Singer, P. Choi, et al. Scripta Mater. 101, 44 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Neumeier, F. Pyczak, and M. Göken, Philos. Mag. 91, 4187 (2011).Google Scholar
  13. 13.
    A. Epishin, T. Link, U. Brückner, and P.D. Portella, Acta Mater. 49, 4017 (2001).CrossRefGoogle Scholar
  14. 14.
    H. A. Roth, C. L. Davis, and R. C. Thomson, Metall. Mater. Trans. A 28, 1329 (1997).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Maciej Zietara
    • 1
  • Steffen Neumeier
    • 2
  • Mathias Göken
    • 2
  • Aleksandra Czyrska-Filemonowicz
    • 1
  1. 1.International Centre of Electron Microscopy for Materials Science and Faculty of Metals Engineering and Computer Industrial ScienceAGH University of Science and Technology (AGH-UST)KrakówPoland
  2. 2.Department Materials Science and EngineeringFriedrich-Alexander-Universität Erlangen-Nürnberg, Institute IErlangenGermany

Personalised recommendations