Advertisement

Metals and Materials International

, Volume 23, Issue 1, pp 220–232 | Cite as

Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

  • Se Min Park
  • Yang Mo Koo
  • Byoung Yul Shim
  • Dong Nyung Lee
Article

Abstract

In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

Keywords

electrical steel texture magnetic properties decarburization oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Aspden, J. Appl. Phys. 37, 1195 (1996).CrossRefGoogle Scholar
  2. 2.
    R. G. Aspden, J. A. Berger, and H. E. Trout, Acta Metall. 16, 1027 (1968).CrossRefGoogle Scholar
  3. 3.
    O. Hashimoto, S. Satoh, and T. Tanaka, Trans. ISIJ Int. 23, 1028 (1983).CrossRefGoogle Scholar
  4. 4.
    O. Hashimoto, S. Satoh, and T. Tanaka, Trans. ISIJ Int. 27, 746 (1987).CrossRefGoogle Scholar
  5. 5.
    J. Wang, B. X. Zhou, M. Y. Yao, Q. Li, and W. J. Chen, J. Iron. Steel Res. Int. 13, 54 (2006).CrossRefGoogle Scholar
  6. 6.
    T. Tomida and T. Tanaka, ISIJ Int. 35, 548 (1995).CrossRefGoogle Scholar
  7. 7.
    T. Tomida, Mater. Trans. 44, 1096 (2003).CrossRefGoogle Scholar
  8. 8.
    J. K. Sung, D. N. Lee, D. H. Wang, and Y. M. Koo, ISIJ Int. 51, 284 (2011).CrossRefGoogle Scholar
  9. 9.
    J. K. Sung, S. M. Park, B. Y. Shim, and Y. M. Koo, Mater. Sci. Forum, {b702-d703}, 730 (2012).Google Scholar
  10. 10.
    N. Yoshinaga, L. A. I. Kestens, and B. C. De Cooman, Mater. Sci. Forum, 495-497, 1267 (2005).CrossRefGoogle Scholar
  11. 11.
    L. Seidal, M. Hölscher, and K. Lücke, Textr. Micostr. 11, 171 (1989).Google Scholar
  12. 12.
    U. Schlippernbach von, F. Emren, and K. Lücke, Acta metall. 34, 1289 (1986).CrossRefGoogle Scholar
  13. 13.
    W. B. Hutchinson, Int. Mater. Rev., 29, 25 (1984).Google Scholar
  14. 14.
    R. K. Ray, J. J. Jonas, and R. E. Hook, Int. Mater. Rev. 39, 129 (1994).CrossRefGoogle Scholar
  15. 15.
    W. B. Hutchinson and E. Lindh, Proc. Int. Forum on Phys. Met. in IF Steel, p.127, ISIJ, Tokyo, Japan (1994).Google Scholar
  16. 16.
    W. B. Hutchinson and L. Ryde, Proc. 16th Risø Symposium, p. 105, Risø National Lab., Roskilde, Denmark (1995).Google Scholar
  17. 17.
    J. J. Jonas and T. Urabe, Proc. of Int. Forum on Phys. Met. in IF Steel, p.143, ISIJ, Tokyo, Japan (1994).Google Scholar
  18. 18.
    F. Emren, U. von Schlippenbach, and K. Lücke, Acta Metall. 34, 2105 (1986).Google Scholar
  19. 19.
    K. Ito, Proc. of Int. Forum on Phys. Met. in IF Steel, p. 99, ISIJ, Tokyo, Japan (1994).Google Scholar
  20. 20.
    Y. Hayakawa and J. A. Szpunar, Acta Metall. 45, 2425 (1997).Google Scholar
  21. 21.
    D. Vanderschueren, N. Ypshinaga, and K. Koyama, ISIJ Int. 36, 1046 (1996).CrossRefGoogle Scholar
  22. 22.
    I. Samajdar, B. Verlinden, and P. Vanhoutte, Acta mater. 46, 2751 (1998).CrossRefGoogle Scholar
  23. 23.
    S.-H. Hong and D. N. Lee, ISIJ Int. 42, 1278 (2002).CrossRefGoogle Scholar
  24. 24.
    D. N. Lee, Int. J. Mech. Sci. 42, 1645 (2000).CrossRefGoogle Scholar
  25. 25.
    D. N. Lee and H. N. Han, Recrystallization Textures of Metals and Alloys, Capter 1, Recent Developments in The Study of Recrystallization (ed. P. Wilson), pp.3–59, InTech - Open Access Publisher, Croatia (2013).Google Scholar
  26. 26.
    D. N. Lee, Script. Metall. Mater. 32, 1689 (1995).CrossRefGoogle Scholar
  27. 27.
    D. N. Lee, Phil. Mag. 85, 297 (2005).CrossRefGoogle Scholar
  28. 28.
    Y. B. Park, D. N. Lee, and G. Gottstein, Mater. Sci. Tech. 13, 289 (1997).CrossRefGoogle Scholar
  29. 29.
    Y. B. Park, D. N. Lee, and G. Gottstein, Acta mater. 46, 3371 (1998).CrossRefGoogle Scholar
  30. 30.
    D. N. Lee, Thin Solid Films 434, 183 (2003).CrossRefGoogle Scholar
  31. 31.
    D. N. Lee, Thin Solid Films 520, 3708 (2012).CrossRefGoogle Scholar
  32. 32.
    J.-M. Zhang and K.-W. Xu, Appl. Surf. Sci. 185, 177 (2002).CrossRefGoogle Scholar
  33. 33.
    H. K. D. H. Bhadeshia and R. W. K. Honeycombe, Steels (Microstructure and Properties), p. 5, Elsevier, Oxford OX2 8DP, UK (2006).Google Scholar
  34. 34.
    M. H. Jo, Y. M. Koo, and S. K. Kwon, Met. Mater. Int. 21, 2 (2015).Google Scholar
  35. 35.
    M. Y. Song, D. R. Mumm, J. Y. Song, and S. D. Yoon, Korean J. Met. Mater. 52, 1 (2014).CrossRefGoogle Scholar
  36. 36.
    H. R. Park, Korean J. Met. Mater. 41, 6 (2014).Google Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Se Min Park
    • 1
  • Yang Mo Koo
    • 2
  • Byoung Yul Shim
    • 3
  • Dong Nyung Lee
    • 4
  1. 1.Steel Products Research Group IIPOSCOPohangRepublic of Korea
  2. 2.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea
  3. 3.Samsung DisplayAsanRepublic of Korea
  4. 4.Department of Materials Science and Engineering and Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations