Advertisement

Metals and Materials International

, Volume 22, Issue 6, pp 1033–1040 | Cite as

Microstructure and creep resistance of a diffusionally aluminized Ni-base superalloy

  • Injin Sah
  • Sung Hwan Kim
  • Changheui JangEmail author
Article

Abstract

An aluminide layer was formed on a wrought Ni-base superalloy by the diffusional aluminizing method, which involves a physical vapor deposition of Al followed by two-step heat treatment in vacuum. Microstructural analysis revealed the presence of an aluminide layer, inter-diffusion zone (IDZ), and affected substrate, all of which developed due to the inter-diffusion of deposited Al and elements in the matrix. In addition, a wide carbide free zone, in which grain boundaries were mostly denuded of carbides, was found below the IDZ. Depth profiling analysis using a glow discharge spectrometer confirmed the reduced carbon content in the carbide free zone. At 900 °C, the diffusionally aluminized specimens showed a decrease in creep-rupture life caused by the presence of the carbide free zone. Fracture surface and cross-section microstructure observation confirmed the detrimental effect of the carbide free zone on the creep resistance of the diffusionally aluminized Alloy 617.

Keywords

alloys surface modification creep scanning electron microscopy (SEM) glow discharge spectrometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Gariboldi, M. Cabibbo, S. Spigarelli, and D. Ripamonti, Int._J. Pre. Ves. Pres. 85, 63 (2008).CrossRefGoogle Scholar
  2. 2.
    C. Cabet and B. Duprey, Nucl. Eng. Des. 251, 139 (2012).CrossRefGoogle Scholar
  3. 3.
    D. Kim, I. Sah, D. Kim, W.-S. Ryu, and C. Jang, Oxid. Met. 75, 103 (2011).CrossRefGoogle Scholar
  4. 4.
    G.-G. Lee, S. Jung, D. Kim, Y.-W. Jeong, and D.-J. Kim, Nucl. Eng. Des. 271, 301 (2014).CrossRefGoogle Scholar
  5. 5.
    G. Gulsoy and G. S. Was, Corros. Sci. 90, 529 (2015).CrossRefGoogle Scholar
  6. 6.
    P. Rodriguez and K. B. S. Rao, Prog. Mater. Sci. 37, 403 (1993).CrossRefGoogle Scholar
  7. 7.
    C. Jang, D. Lee, and D. Kim, Int. J. Pres. Ves. Pip. 85, 368 (2008).CrossRefGoogle Scholar
  8. 8.
    H. Hindam and D. P. Whittle, Oxid. Met. 18, 245 (1982).CrossRefGoogle Scholar
  9. 9.
    P. Xia, G. Han, and K. Xie, Met. Mater. Int. 22, 424 (2016).CrossRefGoogle Scholar
  10. 10.
    Y. I. Son, C. H. Chung, R. R. Gowkanapalli, C. H. Moon, and J. S. Park, Met. Mater. Int. 21, 1 (2015).CrossRefGoogle Scholar
  11. 11.
    G. W. Goward and D. H. Boone, Oxid. Met. 3, 475 (1971).CrossRefGoogle Scholar
  12. 12.
    D. Kim, I. Sah, H. J. Lee, S. Hong, and C. Jang, Surf. Coat. Tech. 244, 15 (2014).CrossRefGoogle Scholar
  13. 13.
    M. Li, X. Sun, W. Hu, and H. Guan, Mater. Lett. 61, 5169 (2007).CrossRefGoogle Scholar
  14. 14.
    M. S. Kim, J. S. Park, Y. I. Son, and J. S. Park, Korean J. Met. Mater. 53, 711 (2015).CrossRefGoogle Scholar
  15. 15.
    E. A. Clark, J. Y. Yang, D. Kumar, G. S. Was, and C. G. Levi, Metall. Mater. Trans. A 44, 835 (2013).CrossRefGoogle Scholar
  16. 16.
    H. J. Lee, I. Sah, D. Kim, and C. Jang, J. Nucl. Mater. 456, 220 (2015).CrossRefGoogle Scholar
  17. 17.
    R. Castillo and K. P. Willett, Metall. Trans. A 15, 229 (1984).CrossRefGoogle Scholar
  18. 18.
    S. B. Kang, Y. G. Kim, H. M. Kim, and N. S. Stoloff, Mater. Sci. Eng. 83, 75 (1986).CrossRefGoogle Scholar
  19. 19.
    G. A. Whitlow, C. G. Beck, R. Viswanathan, and E. A. Crombie, Metall. Trans. A 15, 23 (1984).CrossRefGoogle Scholar
  20. 20.
    F. H. Latief and K. Kakehi, Mater. Design 52, 134 (2013).CrossRefGoogle Scholar
  21. 21.
    F. H. Latief and K. Kakehi, Mater. Design 56, 816 (2014).CrossRefGoogle Scholar
  22. 22.
    K. Rahmani and S. Nategh, Mater. Design 30, 1183 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Mojaddami, S. Rastegari, H. Arabi, and H. Rafiee, Surf. Eng. 28, 772 (2012).CrossRefGoogle Scholar
  24. 24.
    Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, and V.K. Vasukevan, Metall. Mater. Trans. A 39, 2569 (2008).CrossRefGoogle Scholar
  25. 25.
    J. J. Lander, H. E. Kern, and A. L. Beach, J. Appl. Phys. 23, 1305 (1952).CrossRefGoogle Scholar
  26. 26.
    N. L. Peterson, J. Nucl. Mater. 69-70, 3 (1978).CrossRefGoogle Scholar
  27. 27.
    K. Mino and A. Ohtomo, T. Iron Steel I. Jpn. 18, 731 (1978).Google Scholar
  28. 28.
    Y. Hosoi and S. Abe, Metall. Trans. A 6, 1171 (1975).CrossRefGoogle Scholar
  29. 29.
    C. Jang, S. H. Kim, I. Sah, and D. Kim, J. Mech. Sci. Technol. 30, 4433 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.VHTR Technology Development DivisionKAERIDaejeonRepublic of Korea
  2. 2.Department of Nuclear and Quantum EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations