Advertisement

Metals and Materials International

, Volume 22, Issue 5, pp 797–809 | Cite as

Corrosion rate of API 5L Gr. X60 multipurpose steel pipeline under combined effect of water and crude oil

  • Jian Miao
  • Qiang WangEmail author
Article

Abstract

Multipurpose pipeline is often seriously corroded during its service life, and the phenomenon is more prominent once the transportation medium is changed. Electrochemical polarization curves and impedance spectroscopy of the API 5L Gr. X60 steel pipeline’s corrosion process in sedimentary water with different ion types and their concentrations have been studied in this work. The results showed that the corrosion rates were found to be 0.00418 and 0.00232 mm/a for pure water and crude oil, respectively. However, for the mixtures of water and crude oil (with water content increased from 0.2 vol% to 10 vol%), the corrosion rate increased consistently and reached a maximum value of 0.15557 mm/a for 10 vol% water in crude oil. The effect of the concentration of various ions, namely, chloride, bicarbonate and sulfate in (oil/water) mixtures on the corrosion rate was characterized by weight-loss method. The results showed that with increasing the ions’ concentrations, the corresponding exchange current density increased significantly. The results were further supported by the observations of corrosion morphology using scanning electron microscopy and are helpful in devising guidelines which would help in reducing corrosion in multipurpose transport pipelines involving a change of transported medium during their service life.

Keywords

metals deposition corrosion scanning electron microscopy (SEM) X60 steel pipeline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ma, J. Shuai, D. X. Liu, and K. Xu, Eng. Fail. Anal. 32, 209 (2013).CrossRefGoogle Scholar
  2. 2.
    A. P. Teixeiraa, C. G. Soaresa, T. A. Nettob, and S. F. Estefen, Int. J. Pres. Ves. Pip. 85, 228 (2008).CrossRefGoogle Scholar
  3. 3.
    G. Qian, M. Niffenegger, and S. X. Li, Corros. Sci. 53, 855 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. F. Chen, H. Zhang, J. Zhang, X. Li, and J. Zhou, Mater. Des. 67, 552 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. F. Chen, H. Zhang, J. Zhang, X. B. Liu, X. Li, and J. Zhou, Eng. Fail. Anal. 47, 67 (2015).CrossRefGoogle Scholar
  6. 6.
    M. B. Kermani and D. Harr, SPE Annual Technical Conference and Exhibition. p. 7, Sunbury on Thames, UK (1995).Google Scholar
  7. 7.
    L. Y. Xu and Y. F. Cheng, Corros. Sci. 78, 162 (2014).CrossRefGoogle Scholar
  8. 8.
    P. Y. Wang, J. Wang, S. Q. Zheng, Y. M. Qi, M. X. Xiong, and Y. J. Zheng, Int. J. Hydrogen Energ. 40, 11925 (2015).CrossRefGoogle Scholar
  9. 9.
    M. N. Zafar, R. Rihan, and L. Al-Hadhrami, Corros. Sci. 94, 275 (2015).Google Scholar
  10. 10.
    S. S. M. Tavares, J. M. Pardal, F. B. Mainier, H. R. da Igreja, E. S. Barbosa, C. R. Rodrigues, C. Barbosa, and J. P. Pardal, Eng. Fail. Anal. 61, 100 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Ko, B. Ingham, N. Laycock, and D. E. Williams, Corros. Sci. 90, 192 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Zhu, C. W. Du, X. G. Li, Z. Y. Liu, H. Li, and D. W. Zhang, Corros. Sci. 87, 224 (2014).CrossRefGoogle Scholar
  13. 13.
    Y. Hu, R. Barker, and A. Neville, Int. J. Greenh. Gas Con. 37, 412 (2015).CrossRefGoogle Scholar
  14. 14.
    F. Mohammadi, F. F. Eliyan, and A. Alfantazi, Corros. Sci. 63, 323 (2012).CrossRefGoogle Scholar
  15. 15.
    S. Nesie, N Thevenot, and J. L. Crolet, NACE International, p. 1, Houston, Texas, USA (1996).Google Scholar
  16. 16.
    Z. A. Iofa, V. V. Batrakov, and C. N. Ba, Electrochim. Acta 9, 1645 (1964).CrossRefGoogle Scholar
  17. 17.
    D. W. Shoesmith, P. Taylor, and M. G. Bailey, Electrochim. Acta 23, 903 (1978).CrossRefGoogle Scholar
  18. 18.
    G. Schmitt, NACE International, p. 43, Houston, Texas, USA (1983).Google Scholar
  19. 19.
    D. A. Jones and P. S. Amy, Ind. Eng. Chem. Res. 39, 575 (2000).CrossRefGoogle Scholar
  20. 20.
    A. Benmoussa, M. Hadjel, and M. Traisnel, Mater. Corros. 57, 771 (2006).CrossRefGoogle Scholar
  21. 21.
    E. Mc Cafferty, Corr. Sci. 47, 3202 (2005).Google Scholar
  22. 22.
    E. Bardal, Corrosion and Protection, Springer, London, UK (2004).Google Scholar
  23. 23.
    NACE Standard RP0775-2013, p. 14, NACE International (2013).Google Scholar
  24. 24.
    J. L. Luo and Y. F. Cheng, App. Surf. Sci. 152, 3 (1999).Google Scholar
  25. 25.
    X. Mao, X. Liu, and R. W. Revie, Corros. Sci. 50, 9 (1994).Google Scholar
  26. 26.
    K. Hladky, L. M. Callow, and J. L. Dawson, Brit. Corros. J. 15, 20 (1980).CrossRefGoogle Scholar
  27. 27.
    D. C. Grahame, J. Phys. Chem. 57, 257 (1953).CrossRefGoogle Scholar
  28. 28.
    H. Moreira and R. De Levie, J. Electroanal. Chem. Interfac. 35, 103 (1972).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Shenyang national laboratory for materials science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.State Key Laboratory for Performance and Structural Safety of Oil Industry Equipment MaterialsXi’anChina

Personalised recommendations