Advertisement

Metals and Materials International

, Volume 22, Issue 3, pp 493–500 | Cite as

Fabrication of protective-coated SiC reinforced tungsten matrix composites with reduced reaction phases by spark plasma sintering

  • Malik Adeel Umer
  • Dongju Lee
  • Owais Ahmed Waseem
  • Ho Jin Ryu
  • Soon Hyung Hong
Article

Abstract

SiC reinforced tungsten matrix composites were fabricated via the spark plasma sintering process. In order to prevent an interfacial reaction between the SiC and tungsten during sintering, TiOx coated SiC particles were synthesized by a solution-based process. TiOx layer coated SiC particles were treated in high temperature nitriding conditions or annealed in a high temperature vacuum to form TiN or TiC coated SiC particles, respectively. The TiC layers coated on SiC particles successfully prevented tungsten from reacting with SiC; hence the proposed process resulted in successful fabrication of the SiC/W composites. The mechanical properties such as compressive strength and flexural strength of the composites were measured. Additionally, the effect of SiC on the high temperature oxidative ablation of tungsten was also investigated. The addition of SiC resulted in an improved oxidative ablation resistance of the tungsten-based composites.

Keywords

composites sintering coating oxidation strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Hamacher and A. M. Bradshaw, 18th World Energy Congress, p.1, Buenos Aires (2001).Google Scholar
  2. 2.
    B. I. Khripunov, V. S. Koidan, A. I. Ryazanov, V. M. Gureev, S. N. Kornienko, S. T. Latushkin, A. S. Rupyshev, E. V. Semenov, V. S. Kulikauskas, and V. V. Zatekin, Phys. Procedia 71, 63 (2015).CrossRefGoogle Scholar
  3. 3.
    ASM International, ASM International Engineering Materials Handbook, ASM International, Materials Park, OH (1991).Google Scholar
  4. 4.
    S. W. H. Yih and C. T. Wang, Tungsten-Sources, Metallurgy, Properties and Applications, pp. 266–271, Plenum Press, New York (1979).Google Scholar
  5. 5.
    E. Lassner and W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, pp. 1–59, Plenum Publishers, New York (1999).CrossRefGoogle Scholar
  6. 6.
    M. A. Yar, S. Wahlberg, H. Bergqvist, H. G. Salem, M. Johnsson, and M. Muhammed, J. Nucl. Mater. 408, 129 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Rieth, J. L. Boutard, S. L. Dudarev, T. Ahlgren, S. Antusch, and N. Baluc et al., J. Nucl. Mater. 417, 463 (2011).CrossRefGoogle Scholar
  8. 8.
    M. A. Yar, S. Wahlberg, H. Bergqvist, H. G. Salem, M. Johnsson, and M. Muhammed, J. Nucl. Mater. 412, 227 (2011).CrossRefGoogle Scholar
  9. 9.
    Z. Zhou, J. Tan, D. Qu, G. Pintsuk, M. Rödig, and J. Linke, J. Nucl. Mater. 431, 202 (2012).CrossRefGoogle Scholar
  10. 10.
    M. Xia, Q. Yan, L. Xu, H. Guo, L. Zhu, and C. Ge, J. Nucl. Mater. 434, 85 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Wang, L.-M. Luo, X.-Y. Tan, G.-N. Luo, X. Zan, J.-G. Cheng, X.-Y. Zhu, and Y.-C. Wu, J. Nucl. Mater. 454, 114 (2014).CrossRefGoogle Scholar
  12. 12.
    T. Palacios, A. Jiménez, A. Muñóz, M. A. Monge, C. Ballesteros, and J. Y. Pastor, J. Nucl. Mater. 454, 455 (2014).CrossRefGoogle Scholar
  13. 13.
    J. Zhang, L.-M. Luo, X.-Y. Zhu, H.-Y. Chen, J.-L. Chen, X. Zan, J.-G. Cheng, and Y.-C. Wu, J. Nucl. Mater. 456, 316 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Zibrov, M. Mayer, L. Gao, S. Elgeti, H. Kurishita, Y. Gasparyan, and A. Pisarev, J. Nucl. Mater. 463, 1045 (2015).CrossRefGoogle Scholar
  15. 15.
    H.-Y. Chen, L.-M. Luo, J.-B. Chen, P. Li, G.-N. Luo, J.-G. Cheng, and Y.-C. Wu, J. Nucl. Mater. 462, 496 (2015).CrossRefGoogle Scholar
  16. 16.
    M. Xia, Q. Yan, L. Xu, L. Zhu, H. Guo, and C. Ge, J. Nucl. Mater. 430, 216 (2012).CrossRefGoogle Scholar
  17. 17.
    W. D. Kloop, J. Less Common Met. 42, 261 (1975).CrossRefGoogle Scholar
  18. 18.
    M. Rieth, S. L. Dudarev, S. M. Gonzalez de Vicente, J. Aktaa, T. Ahlgren, and S. Antusch et al., J. Nucl. Mater. 432, 482 (2013).CrossRefGoogle Scholar
  19. 19.
    H. Kurishita, S. Matsuo, H. Arakawa, T. Sakamoto, S. Kobayashi, K. Nakai, T. Takida, M. Kato, M. Kawai, and N. Yoshida, J. Nucl. Mater. 398, 87 (2010).CrossRefGoogle Scholar
  20. 20.
    D. Y. Park, Y. J. Oh, Y. S. Kwon, S. T. Lim, and S. J. Park, Int. J. Refract. Met. Hard 42, 205 (2014).CrossRefGoogle Scholar
  21. 21.
    E. Y. Ivanov, C. Suryanarayana, and B. D. Bryskin, Mat. Sci. Eng. A-Struct. 251, 255 (1998).CrossRefGoogle Scholar
  22. 22.
    Y. Song, Q. Li, J. Li, G. He, Y. Chen, and H. S. Kim, Met. Mater. Int. 20, 1145 (2014).CrossRefGoogle Scholar
  23. 23.
    M. Muzyk, D. Nguyen-Manh, J. Wróbel, K. J. Kurzydlowski, N. L. Baluc, and S. L. Dudarev, J. Nucl. Mater. 442, 680 (2013).CrossRefGoogle Scholar
  24. 24.
    A. Xu, C. Beck, D. E. J. Armstrong, K. Rajan, G. D.W. Smith, P. A. J. Bagot, and S. G. Roberts, Acta Mater. 87, 121 (2015).CrossRefGoogle Scholar
  25. 25.
    A. Luo, D. L. Jacobson, and K. S. Shin, Scr. Metall. 23, 397 (1989).CrossRefGoogle Scholar
  26. 26.
    Y. M. Kim, K. H. Lee, E.-P. Kim, D.-I. Cheong, and S. H. Hong, Int. J. Refract. Met. Hard 27, 842 (2009).CrossRefGoogle Scholar
  27. 27.
    G.-M. Song, Y. Zhou, and Y.-J. Wang, Mater. Charact. 50, 293 (2003).CrossRefGoogle Scholar
  28. 28.
    X. Liu, J. Chen, Y. Lian, J. Wu, Z. Xu, and N. Zhang et al., J. Nucl. Mater. 442, S309 (2013).Google Scholar
  29. 29.
    E. Y. Ivanov and B. D. Bryskin, Met. Powder Rep. 53, 39 (1998).CrossRefGoogle Scholar
  30. 30.
    L. M. Huang, L. M. Luo, M. L. Zhao, G. N. Luo, X. Y. Zhu, and Y.-C. Wu et al., Mater. Design 81, 39 (2015).CrossRefGoogle Scholar
  31. 31.
    K. Tokunaga, H. Kurishita, H. Arakawa, S. Matsuo, T. Hotta, K. Araki, Y. Miyamoto, T. Fujiwara, K. Nakamura, T. Takida, M. Kato, and A. Ikegaya, J. Nucl. Mater. 442, 297 (2013).CrossRefGoogle Scholar
  32. 32.
    N. Jin, Y. Yang, X. Luo, J. Li, B. Huang, S. Liu, and Z. Xiao, Appl. Sur. Sci. 314, 896 (2014).CrossRefGoogle Scholar
  33. 33.
    M. Hashemi, S. Mirdamadi, and H. R. Rezaie, Electrochim. Acta 138, 224 (2014).CrossRefGoogle Scholar
  34. 34.
    D. Ding, Advances in Ceramic Matrix Composites, pp. 9–26, Woodhead Publishing Limited, Cambridge (2014).CrossRefGoogle Scholar
  35. 35.
    L. L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, and D. A. Petti, J. Nucl. Mater. 371, 329 (2007).CrossRefGoogle Scholar
  36. 36.
    X. L. Shi, M. Wang, S. Zhang, and Q. Zhang, Int. J. Refract. Met. Hard 41, 60 (2013).CrossRefGoogle Scholar
  37. 37.
    M. I. Chaudry, W. B. Berry, and M. V. Zeller, Mater. Res. Soc. Symp. Proc. 62, 507 (1990).Google Scholar
  38. 38.
    S. Kumar, A. Kumar, K. Sampath, V. V. B. Prasad, J. C. Chaudhary, A. K. Gupta, and G. Rohini Devi, J. Eur. Ceram. Soc. 31, 2425 (2011).CrossRefGoogle Scholar
  39. 39.
    C. Thomas, T. Joseph, A. Peter, and M. James, Ceram. Eng. Sci. Proc. 03, 517 (2000).Google Scholar
  40. 40.
    H.-K. Kang, Scripta Mater. 51, 1051 (2004).CrossRefGoogle Scholar
  41. 41.
    R.-J. Zhang, Y.-Q. Yang, W.-T. Shen, C. Wang, and X. Luo, J. Crys. Growth 313, 56 (2010).CrossRefGoogle Scholar
  42. 42.
    T. T. Cheng, I. P. Jones, R. A. Shatwell, and P. Doorbar, Mat. Sci. Eng. A-Struct. 260, 139 (1999).CrossRefGoogle Scholar
  43. 43.
    C. Guo, C. Zhang, L. He, B. Jin, and N. Shi, J. Mater. Sci. Technol. 23, 677 (2007).CrossRefGoogle Scholar
  44. 44.
    W. F. Seng and P. A. Barnes, Mat. Sci. Eng. B-Solid 72, 13 (2000).CrossRefGoogle Scholar
  45. 45.
    A. Yazdani and A. Zakeri, Powder Technol. 278, 196 (2015).CrossRefGoogle Scholar
  46. 46.
    S. Coskun, M. L. Öveçoglu, B. Özkal, and M. Tanoglu, J. Alloy. Compd. 492, 576 (2010).CrossRefGoogle Scholar
  47. 47.
    R. M. German, A. Bose, and S. S. Mani, Metall. Trans. A. 23, 211 (1992).CrossRefGoogle Scholar
  48. 48.
    P. López-Ruiz, F. Koch, N. Ordás, S. Lindig, and C. García-Rosales, Fusion Eng. Des. 86, 1719 (2011).CrossRefGoogle Scholar
  49. 49.
    M. Galatanu, B. Popescu, M. Enculescu, I. Tiseanu, T. Craciunescu, and A. Galatanu, Fusion Eng. Des. 88, 2598 (2013).CrossRefGoogle Scholar
  50. 50.
    S. J. Son, K. H. Park, Y. Katoh, and A. Kohyama, J. Nucl. Mater. 329-333, 1549 (2004).CrossRefGoogle Scholar
  51. 51.
    L. Baud, C. Jaussaud, R. Madar, C. Bernard, J. S. Chen, and M. A. Nicolet, Mat. Sci. Eng. B-Solid. 29, 126 (1995).CrossRefGoogle Scholar
  52. 52.
    A. Nino, Y. Nakaibayashi, S. Sugiyama, and H. Taimatsu, Mater. Trans. 52, 1641 (2011).CrossRefGoogle Scholar
  53. 53.
    Y. Lee, S. J Son, Y. Katoh, and A. Kohyama, J. Nucl. Mater. 329-333, 549 (2004).CrossRefGoogle Scholar
  54. 54.
    D. J. Lee, H. S. Park, H. J. Ryu, S. W. Jeon, and S. H. Hong, J. Alloy. Compd. 509, 9060 (2011).CrossRefGoogle Scholar
  55. 55.
    Kamiya, Kanichi, Yoko, Toshinobu, Bessho, and Masami, J. Mater. Sci. 22, 937 (1987).Google Scholar
  56. 56.
    W. W. Pultz and W. Hertl, Trans. Faraday Soc. 62, 2499 (1966).CrossRefGoogle Scholar
  57. 57.
    G. D. Zhang and R. Chen, Compos. Interfaces 1, 337 (1993).Google Scholar
  58. 58.
    S. F. Peng and Metallurgy of Tungsten, pp. 168–172, Metallurgy Industry Press, Beijing, China (1981).Google Scholar
  59. 59.
    G.-M. Song, Y. Zhou, and Y.-J. Wang, Mater. Charact. 50, 293 (2003).CrossRefGoogle Scholar
  60. 60.
    J. Y. Park, S. J. Yang, Y. G. Jin, C. R. Park, G. H. Kim, and H. N. Han, Met. Mater. Int. 20, 1037 (2014).CrossRefGoogle Scholar
  61. 61.
    S. Rimza, K. Satpathy, S. Khirwadkar, and K. Velusamy, Fusion Eng. Des. 100, 581 (2015).CrossRefGoogle Scholar
  62. 62.
    X. Zhang, Aerosp. Sci. Technol. 15, 402 (2011).CrossRefGoogle Scholar
  63. 63.
    M. A. Umer, D. J. Lee, H. J. Ryu, and S. H. Hong, Int. J. Refract. Met. Hard 42, 17 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Department of Nuclear and Quantum EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations