Advertisement

Metals and Materials International

, Volume 22, Issue 3, pp 364–372 | Cite as

Effects of vanadium carbides on hydrogen embrittlement of tempered martensitic steel

  • Junmo Lee
  • Taekyung Lee
  • Young Jin Kwon
  • Dong-Jun Mun
  • Jang-Yong Yoo
  • Chong Soo Lee
Article

Abstract

Precipitation of V carbides is known to suppress the hydrogen-embrittlement (HE) phenomenon as well as to increase material strength. Despite increasing attention to V carbides, there have been few systematic and quantitative investigations on their effects on HE resistance. This study reveals the role of V carbides on the HE behavior of tempered martensitic steel while eliminating other factors, such as chemical composition of other elements, mechanical strength, and dislocation density. The amount of trapped hydrogen increased with increasing V content, whereas the best HE resistance was attained at 0.2 wt% V and it decreased with further V addition. V carbide was considered as a non-diffusible hydrogen-trapping site in this study. However, excessive V content led to the formation of large undissolved carbides that gave rise to brittle fracture and decreased HE resistance. This study suggests that improved HE resistance can be achieved by minimizing the size and amount of undissolved V carbides.

Keywords

hydrogen embrittlement precipitation vanadium carbide tempered martensite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Krauss, Mater. Sci. Eng. A 273-275, 40 (1999).CrossRefGoogle Scholar
  2. 2.
    W.-G. Cha and N. S. Kim, Met. Mater. Int. 20, 841 (2014).CrossRefGoogle Scholar
  3. 3.
    C.-H. Lee, M.-G. Park, J. O. Moon, T.-H. Lee, N. H. Kang, and H. C. Kim, Korean J. Met. Mater. 53, 312 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. S. Chun, J. Lee, C. M. Bae, K.-T. Park, and C. S. Lee, Scripta Mater. 67, 681 (2012).CrossRefGoogle Scholar
  5. 5.
    G. Krauss, Comprehensive Materials Processing, 12, 363 (2014).CrossRefGoogle Scholar
  6. 6.
    J. S. Kim, Y. H. Lee, D. L. Lee, K.-T. Park, and C. S. Lee, Mater. Sci. Eng. A 505, 105 (2009).CrossRefGoogle Scholar
  7. 7.
    A. Nagao, M. L. Martin, M. Dadfarnia, P. Sofronis, and I. M. Robertson, Acta Mater. 74, 244 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Gojic and L. Kosec, ISIJ Int. 37, 412 (1997).CrossRefGoogle Scholar
  9. 9.
    S. Li, E. Akiyama, K. Yuuji, K. Tsuzaki, N. Uno, and B. Zhang, Sci. Technol. Adv. Mat. 11, 025005 (2010).CrossRefGoogle Scholar
  10. 10.
    E. Akiyama, M. Wang, S. Li, Z. Zhang, Y. Kimura, N. Uno, and K. Tsuzaki, Metall. Mater. Trans. A 44, 1290 (2013).CrossRefGoogle Scholar
  11. 11.
    F. G. Wei and K. Tsuzaki, Metall. Mater. Trans. A 37A, 331 (2006).CrossRefGoogle Scholar
  12. 12.
    F. G. Wei, T. Hara, and K. Tsuzaki, Advanced Steels April, 87 (2011).CrossRefGoogle Scholar
  13. 13.
    F. G. Wei and K. Tsuzaki, Proceedings of the 2008 International Hydrogen Conference - Effects of Hydrogen on Materials, pp.456–463, International Institute for Carbon-Neutral Energy Research, United States (2008).Google Scholar
  14. 14.
    J. Lee, T. Lee, Y. J. Kwon, D.-J. Mun, J.-Y. Yoo, and C. S. Lee, Corros. Rev. 33, 433 (2015).Google Scholar
  15. 15.
    R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson, Scand. J. Metall. 28, 186 (1999).Google Scholar
  16. 16.
    H. Asahi, D. Hirakami, and S. Yamasaki, ISIJ Int. 43, 527 (2003).CrossRefGoogle Scholar
  17. 17.
    J. O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad 26, 273 (2002).CrossRefGoogle Scholar
  18. 18.
    H. E. Kissinger, Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
  19. 19.
    H. H. Johnson and A. R. Troiano, Nature 179, 777 (1957).CrossRefGoogle Scholar
  20. 20.
    R. A. Oriani and P. H. Josephic, Acta Metall. Mater. 22, 1065 (1974).CrossRefGoogle Scholar
  21. 21.
    N. Keijiro, T. Hideo, and C. Xiaolie, Eng. Fract. Mech. 24, 513 (1986).CrossRefGoogle Scholar
  22. 22.
    J. Lufrano and P. Sofronis, Acta Mater. 46, 1519 (1998).CrossRefGoogle Scholar
  23. 23.
    W. W. Gerberich and Y. T. Chen, MTA 6, 271 (1975).CrossRefGoogle Scholar
  24. 24.
    P. Sofronis and R. M. McMeeking, J. Mech. Phys. Solids 37, 317 (1989).CrossRefGoogle Scholar
  25. 25.
    J. Toribio, J. Mater. Sci. 28, 2289 (1993).CrossRefGoogle Scholar
  26. 26.
    T. Oikawa, J. J. Zhang, M. Enomoto, and Y. Adachi, ISIJ Int. 53, 1245 (2013).CrossRefGoogle Scholar
  27. 27.
    L. Vanherpe, N. Moelans, B. Blanpain, and S. Vandewalle, Comp. Mater. Sci. 49, 340 (2010).CrossRefGoogle Scholar
  28. 28.
    Y. K. Kim, T. H. Cho, S. H. Jeong, W. T. Kim, and D. H. Kim, Met. Mater. Int. 21, 741 (2015).CrossRefGoogle Scholar
  29. 29.
    S. Morooka, Y. Tomota, and T. Kamiyama, ISIJ Int. 48, 525 (2008).CrossRefGoogle Scholar
  30. 30.
    S. Takebayashl, T. Kunieda, N. Yoshinaga, K. Ushioda, and S. Ogata, ISIJ Int. 50, 875 (2010).CrossRefGoogle Scholar
  31. 31.
    N. S. Lim, C. W. Bang, S. Das, H. W. Jin, R. Ayer, and C. G. Park, Met. Mater. Int. 18, 87 (2012).CrossRefGoogle Scholar
  32. 32.
    J. Takahashi, K. Kawakami, and T. Tarui, Scripta Mater. 67, 213 (2012).CrossRefGoogle Scholar
  33. 33.
    S. Yamasaki and H. K. D. H. Bhadeshia, Mater. Sci. Tech. Ser 19, 1335 (2003).CrossRefGoogle Scholar
  34. 34.
    E. C. Bain and H. W. Paxton, Alloying Elements in Steel, p. 187, American Society for Metals (1966).Google Scholar
  35. 35.
    Y. S. Chun, J. S. Kim, K.-T. Park, Y.-K. Lee and C. S. Lee, Mater. Sci. Eng. A 533, 87 (2012).CrossRefGoogle Scholar
  36. 36.
    J. Y. Lee and J.-L. Lee, Philos. Mag. A 56, 293 (1987).CrossRefGoogle Scholar
  37. 37.
    I. J. Park, K. H. Jeong, J. G. Jung, C. S. Lee, and Y. K. Lee, Int. J. Hydrogen Energ. 37, 9925 (2012).CrossRefGoogle Scholar
  38. 38.
    T. Tsuchida, T. Hara, and K. Tsuzaki, Tetsu To Hagane 88, 771 (2002).Google Scholar
  39. 39.
    R. G. Baker and J. Nutting, ISI Special Report 64, 1 (1959).Google Scholar
  40. 40.
    Z. F. Hu and Z. G. Yang, J. Mater. Eng. Perform. 12, 106 (2003).CrossRefGoogle Scholar
  41. 41.
    V. N. Lipatnikov, A. I. Gusev, P. Ettmayer and W. Lengauer, J. Phys-Condens. Mat. 11, 163 (1999).CrossRefGoogle Scholar
  42. 42.
    R. Kesri and M. Duran-Charre, Mater. Sci. Tech. Ser 4, 692 (1988).CrossRefGoogle Scholar
  43. 43.
    W. S. Williams, High Temp-High Press. 4, 627 (1972).Google Scholar
  44. 44.
    T. Epicier, D. Acevedo, and M. Perez, Philos. Mag. 88, 31 (2008).CrossRefGoogle Scholar
  45. 45.
    X. Chong, Y. Jiang, R. Zhou, and J. Feng, RSC Advances 4, 44959 (2014).CrossRefGoogle Scholar
  46. 46.
    K. Miura, R. Souda, T. Aizawa, C. Oshima, S. Otani, and Y. Ishizawa, J. Vac. Sci. Technol. A 7, 3013 (1989).CrossRefGoogle Scholar
  47. 47.
    K. Kawakami and T. Matsumiya, ISIJ Int. 52, 1693 (2012).CrossRefGoogle Scholar
  48. 48.
    G. M. Pressouyre, Metall. Trans. A 10A, 1571 (1979).CrossRefGoogle Scholar
  49. 49.
    I. J. Park, S. Y. Jo, M. Kang, S. M. Lee, and Y. K. Lee, Corros. Sci. 89, 38 (2014).CrossRefGoogle Scholar
  50. 50.
    H. Kawakami, K. Tamaki, J. Suzuki, K. Takahashi, Y. Imae, and S. Ogusu, Weld World 55, 78 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Graduate Institute of Ferrous Technology (GIFT)Pohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Magnesium Research CenterKumamoto UniversityKumamotoJapan
  3. 3.Steel Products Research Group 1PohangRepublic of Korea

Personalised recommendations