Metals and Materials International

, Volume 22, Issue 3, pp 501–508 | Cite as

Effect of surface oxidation layer on tensile strength of Cu-Ni alloy in friction stir welding

  • Taejin Yoon
  • Sangwon Park
  • Sungwook Chung
  • Joongsuk Noh
  • Kwangho Kim
  • Chungyun Kang
Article

Abstract

Friction stir welding (FSW) of thick Cu-Ni plate was successfully completed. The fracture position after tensile testing was located at the weld nugget zone (WNZ), where surface oxidation occurred. The oxidation morphologies on the surface of the base metal were analyzed by SEM, EPMA and XRD, with the oxide layer being obtained by simple and useful way to analyze the oxide products, namely, collecting oxide powders after immersing of the oxidized specimen into HNO3 solution. The results highlighted that an oxide layer of 30 μm thickness consists of a mixture of two phases, Cu2O and NiO, on the surface of the base metal. After FSW, the thickness of the oxide layer on the surface was decreased to approximately 5 μm, and broken oxide particles, which is NiO, penetrated into the WNZ by the rotating tool. NiO was preferentially formed at the surface after FSW because it has a lower Gibbs free energy value at 950 °C, which is the peak temperature measured during FSW. Oxide layer of Cu-Ni plate was clearly only removed by mechanical method grinding with 1200-grit SiC paper. The removal of oxide layer results in improved mechanical strength.

Keywords

surface oxidation X-ray diffraction tensile test friction stir welding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Wiener and B. V. Salas, Corros. Eng. Sci. Techn. 40, 137 (2005).CrossRefGoogle Scholar
  2. 2.
    O. E. Cekic, L. Sidjanin, D. Rajnovic, and S. Balos, Met. Mater. Int. 20, 1131 (2014).CrossRefGoogle Scholar
  3. 3.
    M. A. Cangiano and M. W. Ojeda, Mater. Charact. 61, 1135 (2010).CrossRefGoogle Scholar
  4. 4.
    J. P. Chubb, J. Billingham, P. Hancock, C. Dimbylow, and G. Newcombe, J. Metals. 30, 20 (1978).Google Scholar
  5. 5.
    W. Thomas, Friction Stir Welding, http://wwwtwi-global. com/capabilities/joining-technologies/friction-processes/friction-stir-welding (accessed February 03, 2016)Google Scholar
  6. 6.
    N. K. Kim, B. C. Kim, Y. G. An, B. H. Jung, S. W. Song, and C. Y. Kang, Met. Mater. Int. 15, 671(2009).CrossRefGoogle Scholar
  7. 7.
    J. N. Kim, S. U. Lee, H. D. Kwun, K. S. Shin, and C. Y. Kang, Met. Mater. Int. 20, 1067(2014).CrossRefGoogle Scholar
  8. 8.
    R. S. Mishra and Z. Y. Ma, Mat. Sci. Eng. R. 50, 1 (2005).CrossRefGoogle Scholar
  9. 9.
    R. T. Lee, C. T. Liu, Y. C. Chiou, and H. L. Chen, J. Mater. Proccess. Tech. 213, 69 (2013).CrossRefGoogle Scholar
  10. 10.
    K. Ferjutz and J. R. Davis, ASM Handbook, Welding Brazing and Soldering. Vol. 6, p. 88, ASM International, USA (1993).Google Scholar
  11. 11.
    T. J. Yoon and C. Y. Kang, Mater. Lett. 142, 253 (2015).CrossRefGoogle Scholar
  12. 12.
    S. Babu, K. Elangovan, V. Balasubramanian, and M. Balasubramanian, Met. Mater. Int. 15, 321 (2009).CrossRefGoogle Scholar
  13. 13.
    R. Haugsrud and P. Kofstad, Oxid. Met. 50, 189 (1998).CrossRefGoogle Scholar
  14. 14.
    D. P. Whittle and G. C. Wood, Corr. Sci. 8, 295 (1968).CrossRefGoogle Scholar
  15. 15.
    Copper development association, Copper-nickel welding and fabrication, http://wwwcopperallianceorguk/docs/librariesprovider5/ resources/pub-139-copper-nickel-welding-andfabrication-pdfpdf (accessed February 03, 2016).Google Scholar
  16. 16.
    H. J. T. Ellingham, J. Soc. Chem. Ind. 63, 125 (1944).CrossRefGoogle Scholar
  17. 17.
    G. V. Samsonov, The Oxide Handbook, 2nd ed., p. 125, IFI/Plenum, New York, USA (1982).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Taejin Yoon
    • 1
  • Sangwon Park
    • 2
  • Sungwook Chung
    • 3
  • Joongsuk Noh
    • 4
  • Kwangho Kim
    • 2
    • 5
  • Chungyun Kang
    • 5
  1. 1.National Core Research CenterPusan National UniversityBusanRepublic of Korea
  2. 2.Graduate School of Convergence SciencePusan National UniversityBusanRepublic of Korea
  3. 3.Welding Engineering R&D groupDaewoo Shipbuilding and Marine Engineering Co., Ltd.Gyeongsangnam-doRepublic of Korea
  4. 4.R&D CenterTaekwang Tech Co., LTDKyoungjuRepublic of Korea
  5. 5.Department of Materials Science and EngineeringPusan National UniversityBusanRepublic of Korea

Personalised recommendations